Modeling and analysis of a novel dual open-end stator windings wound rotor synchronous machine with dampers

Abdelmonoem NAYLI¹,²,*, Sami GUIZANI²,³, Faouzi BEN AMMAR²

¹University of Tunis, ENSIT, Tunisia
²University of Carthage, MMA Laboratory, INSAT, Tunisia
³University of El Manar, IPEIEM, Tunisia

Received: 28.06.2015 • Accepted/Published Online: 15.03.2016 • Final Version: 10.04.2017

Abstract: This work presents a novel wound rotor synchronous machine with dampers with dual three-phase open-end stator windings. The aim of the proposed machine is to improve the power segmentation and the availability of the drive system. The mathematical model of this machine is presented in the Park reference frame. This machine is supplied by four 2-level inverters, where each inverter is dimensioned for quarter power of the machine. For comparison purposes, we use a double star synchronous machine fed by two 2-level inverters. Comparative simulation analysis using THD voltage, THD stator current, and torque undulation showed significant advantages of the proposed machine.

Key words: Dual open-end stator windings synchronous machine, double star synchronous machine, power segmentation, availability

1. Introduction

Synchronous machines are widely used in industry, particularly permanent magnet synchronous machines. These machines are essentially present for low and medium power. For high power, wound rotor synchronous machines are mainly used in the field of production of electrical energy [1]. Obviously, the association of the converters with these machines remains a problem because of the cutting frequency limitation. Several searches were carried out at levels of the converter in order to remedy this problem using multilevel inverters with topology NPC, flying-capacitor, and cascaded H-bridge inverter [2–6]. Other research has presented solutions at the levels of the stator windings structures such as multiphase machines and multistar machines [7–15]. In recent years, the open-end winding machine, which is proposed by Stemmler and Geggenbach [16], is presented in [17–20]. Next, the multiphase open-end winding machine structure with five-phase open-end winding configuration is presented in [21]. Furthermore, new publications have presented a novel machine structure, which is a three-phase dual open-end winding induction machine fed by four voltage source inverters [22,23]. This machine offers power segmentation and improves the reliability and availability of the drive system. In particular, it increases the liberty degrees in degraded mode.

Then the authors present a novel structure of dual open-end stator windings synchronous machine “DOEWSM” with salient-pole wound rotor with damper windings. Such a stator windings structure is shown in Figure 1.

*Correspondence: n.ayli@hotmail.fr
In the first part, the modelling of the dual three-phase open-end stator windings synchronous machine with damper windings is presented in Park (d, q) reference frame. The simulation model of the machine for voltage supply is implemented in MATLAB Simulink environment.

In the second part, the feeding of the machine by four three-phase 2-level inverters based on PWM control strategy is presented. The different obtained results of the THD voltage, THD stator current, and torque undulation are compared with the double star synchronous machine “DSSM”. Finally, the influence of damper windings for “DOEWSM” is shown by the simulation results of speed and torque.

2. Modelling of the dual open-end windings wound rotor synchronous machine with dampers in Park reference frame

Park transformation allows reproduction of the magnetic state created by the three-phase system by means of an equivalent two-phase system. Indeed, three-phase stator magnitudes shifted of 120° (S_{11}, S_{12}, S_{13}) and (S_{21}, S_{22}, S_{23}) as shown in Figure 2 are brought to the two-phase magnitudes in the reference frame of Park (d, q) rotating at the speed ωr, which allows removal of the no-linearity. The winding rotor is not transformed. Figure 3 represents the model of the wound rotor synchronous machine with damper windings in the (d, q) reference frame.

The developed model is based on the following assumptions:
- The stator windings m.m.f. is in sinusoidal space distribution.
- The saturation of the magnetic circuit, the hysteresis, and the eddy currents are neglected.
- The skin effect that increases resistances and decreases inductances is neglected.

The flux equations in matrix form on the axis (d, q):

$$\begin{bmatrix} \psi \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} I \end{bmatrix}$$ (1)
The voltage equations in the reference frame (\(d, q\)) are

\[
[V] = [R][I] + \frac{d}{dt}[\psi] + [\omega][\psi]
\]

with

\[
[V] = \begin{bmatrix}
V_{sd11} - V_{sd12} & V_{sd21} - V_{sd22} & V_{sq11} - V_{sq12} & V_{sq21} - V_{sq22} & V_f & 0 & 0
\end{bmatrix}^T
\]

\[
[I] = \begin{bmatrix}
i_{sd1} & i_{sd2} & i_{sq1} & i_{sq2} & i_f & i_{kd} & i_{kq}
\end{bmatrix}^T
\]

\[
[\psi] = \begin{bmatrix}
\psi_{sd1} & \psi_{sd2} & \psi_{sq1} & \psi_{sq2} & \psi_f & \psi_{kd} & \psi_{kq}
\end{bmatrix}^T
\]
\[L = \begin{bmatrix}
L_d & M_d & 0 & 0 & M_{fd} & M_{kd} & 0 \\
M_d & L_d & 0 & 0 & M_{fd} & M_{kd} & 0 \\
0 & 0 & L_q & M_q & 0 & 0 & M_{kq} \\
0 & 0 & M_q & L_d & 0 & 0 & M_{kq} \\
M_{fd} & M_{fd} & 0 & L_f & M_{fkd} & 0 \\
M_{kd} & M_{kd} & 0 & M_{fkd} & L_{kd} & 0 \\
0 & 0 & M_{kq} & M_{kq} & 0 & 0 & L_{kq}
\end{bmatrix} \] (3)

\[R = \begin{bmatrix}
R_s & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_s & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_s & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & R_s & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & R_f & 0 & 0 \\
0 & 0 & 0 & 0 & R_{kd} & 0 \\
0 & 0 & 0 & 0 & 0 & R_{kq} & 0
\end{bmatrix} \] (4)

\[\omega = \begin{bmatrix}
0 & 0 & -\omega_r & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\omega_r & 0 & 0 & 0 \\
\omega_r & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \omega_r & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \] (5)

where \(R_s \) is the resistance of the stator, \(R_f \) is the resistances of the excitation winding of rotor, \(R_{kd} \) and \(R_{kq} \) are the resistance of damper winding, and d- and q-axis, respectively. \(L_d \) and \(L_q \) are the inductance of the stator, and d- and q-axis, respectively. \(L_f \) is the inductance of the excitation winding of the rotor. \(M_d \) and \(M_q \) are the mutual inductance of the stator, and d- and q-axis, respectively. \(M_{fd} \) is the mutual inductance between stator d, 2-axis and excitation winding of the rotor. \(M_{fkd} \) is the mutual inductance between damper winding and excitation winding of the rotor. \(M_{kd} \) is the mutual inductance between stator d, 2-axis and dampers winding of the rotor. \(M_{kq} \) is the mutual inductance between stator q, 2-axis and dampers winding of the rotor. \(M_q \) is the mutual inductance between stator q, 1-axis and stator q, 2-axis.

3. Simulation model of the “DOEWSM”

If the “DOEWSM” is supplied by four voltage sources, the mathematical current model is written in (d, q) reference frame \((\omega_r = \omega_{dq}) \), and described by the following state equation representation:

\[
\begin{cases}
\frac{dX(t)}{dt} = [A(\omega, \omega_{dq})] [X(t)] + [B]U(t) \\
Y(t) = [C] X(t)
\end{cases}
\] (6)
with

\[
X(t) = \begin{bmatrix} i_{sd1} & i_{sd2} & i_{sq1} & i_{sq2} & i_f & i_{kd} & i_{kq} \end{bmatrix}^T: \text{State vector}
\]

\[
U(t) = \begin{bmatrix} V_{sd11} - V_{sd12} & V_{sd12} - V_{sd22} & V_{sq11} - V_{sq12} & V_{sq12} - V_{sq22} & V_f & 0 & 0 \end{bmatrix}^T: \text{Control vector}
\]

\[
Y(t) = \begin{bmatrix} \psi_{sd1} & \psi_{sd2} & \psi_{sq1} & \psi_{sq2} & \psi_f & \psi_{kd} & \psi_{kq} \end{bmatrix}^T: \text{Output vector}
\]

The functional diagram is given in Figure 4.

![Figure 4. Functional diagram of the synchronous machine “DOEWSM”.

The state matrix \([A]\) is

\[
\frac{d}{dt} [I] = [A] \cdot [I] + [B] [V]
\]

(7)

with

\[
[A] = -([R] \cdot [L]^{-1} + [\omega])
\]

(8)

The matrix \([B]\) is

\[
[B] = [L]^{-1}
\]

(9)

The matrix \([C]\) is

\[
[C] = [L]
\]

(10)

with

\[
[A] = \begin{bmatrix}
R_s K_1 & R_s K_2 & -\omega_r & 0 & \frac{R_s(L_{kd} M_{fL} - M_{fL} M_{kd})}{X_1} & \frac{R_s(L_f M_{M} - M_{fL} M_{kd})}{X_1} & 0 \\
R_s K_2 & R_s K_1 & 0 & -\omega_r & \frac{R_s(L_{kd} M_{fL} - M_{fL} M_{kd})}{X_1} & \frac{R_s(L_f M_{M} - M_{fL} M_{kd})}{X_1} & 0 \\
-\omega_r & 0 & \frac{R_s(L_{kd} L_e - M_{fL}^2)}{X_1(L_e - M_{fL})} & \frac{R_s(M_{fL}^2 - L_{kd} M_{kd})}{X_1(L_e - M_{fL})} & 0 & 0 & \frac{-M_{kd}}{X_2} \\
0 & -\omega_r & \frac{R_s(L_{kd} L_e - M_{fL}^2)}{X_1(L_e - M_{fL})} & \frac{R_s(L_{kd} L_e - M_{fL}^2)}{X_1(L_e - M_{fL})} & 0 & 0 & \frac{-M_{kd}}{X_2} \\
R_f K_3 & R_f K_3 & 0 & 0 & \frac{R_f(2M_{fL} M_{fL} - M_{fL}^2)}{X_1} & \frac{R_f(M_{fL} M_{fL} - 2M_{fL}^2)}{X_1} & 0 \\
R_{kd} K_4 & R_{kd} K_4 & 0 & 0 & \frac{R_{kd}(L_f + M_d) M_{kd} - 2M_{fL}^2}{X_1} & \frac{R_{kd}(2M_{fL}^2 - L_f (L_f + M_d))}{X_1} & 0 \\
0 & 0 & -\frac{R_{kd} M_{kd}}{X_2} & -\frac{R_{kd} M_{kd}}{X_2} & 0 & 0 & \frac{R_{kd}(L_f + M_d)}{X_2}
\end{bmatrix}
\]
The general expression of the electromagnetic torque is

\[T_{em} - T_r = \frac{d\omega}{dt} + f\omega \]

(11)

The mechanical equation is given by the following relationship:

\[
X_1 = 2M^2_{jd}(L_{kd} - M_{fkd}) + M^2_{jd}(L_d + M_d) + 2M_{fd}M_{kd}(L_f - M_{fkd}) - L_f(L_{kd}M_d + L_dL_{kd})
\]

\[
X_2 = -2M^2_{kq} + L_{kq}(L_q + M_q)
\]

\[
K_1 = -\frac{L_d(L_fL_{kd} - M^2_{fkd}) + M_{fd}((M_{fkd} - L_{kd})M_{fd} + (M_{fkd} - L_f)M_{kd})}{X_1(L_d - M_d)}
\]

\[
K_2 = -\frac{(L_{kd}M^2_{fd} + M_{fkd}(-M^2_{fd} + M_dM_{fkd} - M_{fd}M_{kd}) + L_f(-L_{kd}M_d + M_{fd}M_{kd}))}{X_1(L_d - M_d)}
\]

\[
K_3 = \frac{M_{fd}(L_{kd} - M_{fkd})}{X_1};
\]

\[
K_4 = \frac{M_{fd}(L_f - M_{fkd})}{X_1};
\]

The general expression of the electromagnetic torque is

\[
T_{em} = \frac{3}{2}p((L_d - L_q)(i_{sd1}i_{sq1} + i_{sd2}i_{sq2}) + (M_d - M_q)(i_{sd2}i_{sq1} + i_{sd1}i_{sq2}) + (i_{sq1} + i_{sq2})(M_{fd}i_{f} + M_{kd}i_{kd}) - M_{kq}i_{kq}(i_{sd1} + i_{sd2}))
\]

(12)

4. Supply of the machine by three-phase 2-level inverters

The simulation model of the proposed machine is validated in MATLAB Simulink environment. Each entry of stator winding is supplied by a three-phase 2-level inverter, as shown in Figure 5. We used carrier PWM for control inverters. The strategy PWM involves the use of six reference voltages of frequency \(f_s = 50 \) Hz; the three reference voltages \((V_{s11}, V_{s12}, \text{and } V_{s13}) \) are shifted by 120° between them, also three other \((V_{s21}, V_{s22} \text{and } V_{s23}) \) are shifted by 120° between them, but the last three are shifted from to the first reference voltages by an angle of 180°. These reference voltages are compared with carrier frequency \(f_p \) for control the switching of devices in each inverter, as shown in Figure 6.
Figure 5. Supply “DOEWSM” by four three-phase 2-level inverters.

Figure 6. Principle of the PWM sine triangle.

The reference voltage signals with carrier triangular for control inverters to supply the machine are shown in Figure 7.

Figure 8 shows the voltage \((V_{s11} - V_{s12}) \), \((V_{s21} - V_{s22}) \) and phase-to-phase voltage \((U_{A}) \) of stator windings A, which is 3 levels to supply with two three-level inverters, the same simulation results for the voltages of stator winding B. We used carrier PWM for control inverters with carrier frequency \(f_p = 5000 \text{ Hz} \),
Figure 7. Reference voltages with a triangular signal for control inverters.

Figure 8. Pole voltage inverters and phase-to-phase machine voltage.

with

V_{sA11}, V_{sA12}, and V_{sA13}: simple voltage of inverter A

V_{sA21}, V_{sA22}, and V_{sA23}: simple voltage of inverter A

V_{sB11}, V_{sB12}, and V_{sB13}: simple voltage of inverter B

V_{sB21}, V_{sB22}, and V_{sB23}: simple voltage of inverter B

$(V_{sA11} - V_{sA12})$: pole voltage of inverter A

$(V_{sA21} - V_{sA22})$: pole voltage of inverter A

$(V_{sB11} - V_{sB12})$: pole voltage of inverter B

$(V_{sB21} - V_{sB22})$: pole voltage of inverter B

$U_A = (V_{sA11} - V_{sA12}) - (V_{sA21} - V_{sA22})$: phase-to-phase voltage of stator winding A

$U_B = (V_{sB11} - V_{sB12}) - (V_{sB21} - V_{sB22})$: phase-to-phase of stator winding B.
We also modeled and simulated the double star synchronous machine “DSSM” with damper winding to compare with the proposed machine. The evolution of the currents, speed, and torque T_{em} for the two machines for the power $P = 40 \text{ kW}$ is shown in Figure 9. At $t = 0 \text{ s}$ to $t = 1 \text{ s}$, the system has a starting cycle.

Figure 9. Evolution of the currents, speed, and torque.
in which the machine is working in no-load condition. At time \(t = 1 \) s, the impact of torque \(T_r = 150 \) Nm is applied. At time \(t = 2s \), the no-load torque is applied.

Figure 10 shows the waveform and the harmonic content of the phase-to-phase machine voltage with THD voltage = 70.06% of the machine “DSSM” and THD voltage = 44.05% of the machine “DOEWSM”.

![Waveform and harmonic ratio of machine voltage.](image)

We notice that the machine “DOEWSM” offers extended band-width, increased level of voltage, and better THD voltage.

In order to analyze the torque undulations, we defined \(\Delta T_{em} \) by the expression

\[
\Delta T_{em} = \frac{T_{Max} - T_{moy}}{T_{moy}} \times 100
\]

Figure 11 shows the enlarging effect of the torque during the permanent mode for a load torque \(T_r = 150 \) Nm.

![Enlarging effect of the waveform torque.](image)

The calculation of the undulation torque in a permanent regime is

For the machine “DSSM”: \(\Delta T_{em} = \frac{157.2 - 150}{150} \times 100 = 4.8\% \)
For the machine “DOEWSM”: \(\Delta Tem = \frac{152.7 - 150}{150} \times 100 = 1.8\% \)

The machine “DOEWSM” gives a better quality of the torque.

The simulation results of stator current of the two machine structures “DSSM” and “DOEWSM” during the starting and permanent mode are shown in Figure 12.

The zoom of evolution of stator current of the two machines in permanent mode is given in Figure 13.

Figure 14 shows the waveform and the harmonic content of the stator current with THD current = 2.27% of the machine “DSSM” and THD current = 0.65% of the machine “DOEWSM”.

Figure 12. Evolution of the stator currents during the starting and permanent mode.

Figure 13. Evolution of the current during the permanent mode.
The machine “DOEWSM” offers a better THD stator current and extended bandwidth. The enlarging of the bandwidth shown in Figures 10 and 14 is due to the feeding of the machine by phase opposition voltages, more precisely the PWM strategy in phase opposition used for the control of inverters A1 and A2, even for inverters B1 and B2. To view the influence of the proposed machine with damper windings, we also simulate the same machine without damper windings. Figure 15 shows the simulation results of speed and torque in starting mode when we note the decreases in the undulation of speed and torque for a machine with dampers.

![Figure 14. Waveform and harmonic ration of stator current.](image)

![Figure 15. Influence of the dampers for the “DOEWSM”.](image)
Table 1 summarizes the THD voltages (%), THD stator current (%), and torque undulation (%) for the two machine structures with P = 40 kW and load torque Tr = 150 Nm. The power inverters for assuring the supply to each machine are also shown in the table.

Table 1. THD voltages (%), undulations of torque (%) and power inverters.

<table>
<thead>
<tr>
<th></th>
<th>DSSM</th>
<th>DOEWSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD voltage (%)</td>
<td>70.06</td>
<td>44.05</td>
</tr>
<tr>
<td>∆Tem (%)</td>
<td>4.8</td>
<td>1.8</td>
</tr>
<tr>
<td>THD current (%)</td>
<td>2.27</td>
<td>0.65</td>
</tr>
<tr>
<td>Power inverter</td>
<td>P/2</td>
<td>P/4</td>
</tr>
</tbody>
</table>

The different results for THD voltage, THD stator current, and torque undulations show the important advantage of the dual open-end windings synchronous machine.

Furthermore, the novel dual open-end winding synchronous machine is a good solution for power segmentation because of the feeding of this machine by four inverters. Each inverter is dimensioned to a quarter power of the machine.

The characteristics of the synchronous machine are shown in Table 2.

Table 2. The characteristics of the synchronous machine.

<table>
<thead>
<tr>
<th>Nominal power P</th>
<th>40 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed n</td>
<td>1500 rpm</td>
</tr>
<tr>
<td>Resistance of stator Rs</td>
<td>0.5 Ω</td>
</tr>
<tr>
<td>Resistance of wound rotor Rf</td>
<td>0.643 Ω</td>
</tr>
<tr>
<td>Resistance of damper Rkd</td>
<td>0.45747 Ω</td>
</tr>
<tr>
<td>Resistance of damper Rkq</td>
<td>0.41637 Ω</td>
</tr>
<tr>
<td>Inductance of stator Ld</td>
<td>29.85 mH</td>
</tr>
<tr>
<td>Inductance of stator Lq</td>
<td>14.87 mH</td>
</tr>
<tr>
<td>Inductance of rotor Lf</td>
<td>30.89 mH</td>
</tr>
<tr>
<td>Inductance of damper Lkd</td>
<td>30.981 mH</td>
</tr>
<tr>
<td>Inductance of damper Lkq</td>
<td>15.882 mH</td>
</tr>
<tr>
<td>Mutual inductance of stator 1 and 2 Md</td>
<td>28.89 mH</td>
</tr>
<tr>
<td>Mutual inductance of stator 1 and 2 Mq</td>
<td>28.89 mH</td>
</tr>
<tr>
<td>Mutual inductance between stator 1, 2, and rotor Mfd</td>
<td>28.89 mH</td>
</tr>
<tr>
<td>Mutual inductance between damper axis d and rotor Mfkd</td>
<td>28.89 mH</td>
</tr>
<tr>
<td>Mutual inductance between stator 1, 2, and dampers axis d Mkld</td>
<td>28.89 mH</td>
</tr>
<tr>
<td>Mutual inductance between stator 1, 2, and dampers axis q Mkq</td>
<td>13.81 mH</td>
</tr>
<tr>
<td>Inertia moment J</td>
<td>0.1 kg m²</td>
</tr>
<tr>
<td>Viscous force f</td>
<td>0.001 N.m.s/rad</td>
</tr>
</tbody>
</table>

5. Conclusion
Modeling is presented that describes the operation of a salient-pole wound rotor dual open-end stator winding synchronous machine with damper windings fed by four 2-level inverters based on PWM control strategy.

The simulation results of the dual three-phase open-end winding synchronous machine compared with the double star synchronous machine using THD voltage, THD stator current, and torque undulation allow us to increase the level of machine voltage, give best torque quality, and improve THD voltage and THD stator current of the machine, as well as extend the bandwidth.
This machine structure presents a significant advantage in terms of power segmentation. Indeed, the dimensioning of each inverter is reduced to a quarter power of the machine. This structure requires four transformers with reduced power \((P/4)\). Therefore, this installation is expensive but the association machine with four inverters shows the important advantage for the operation in degraded mode, which increased the liberty degrees of the system. Indeed, the loss of three successive inverters does not stop the machine, which allows us to improve the reliability and availability of the drive system.

References

