Obstacle avoidance for mobile robot based on improved dynamic window approach

Xiuyun Li¹,², Fei Liu³, Juan Liu⁴, Shan Liang²,*
¹Chongqing Vocational Institute of Engineering, Chongqing, P.R. China
²College of Automation, Chongqing University, Chongqing, P.R. China
³National Center for Robot Testing and Evaluation (Chongqing), Chongqing, P.R. China
⁴China Coal Technology Engineering Group Chongqing Research Institute, Chongqing, P.R. China

Received: 22.04.2015 * Accepted/Published Online: 06.12.2015 * Final Version: 10.04.2017

Abstract: The dynamic window approach has the drawback that it may result in local minima and nonoptimal motion decision for obstacle avoidance because of not considering the size constraint of a mobile robot. Thus, an improved dynamic window approach is proposed, which takes into account the relation between the size of the mobile robot and the free space between obstacles. A laser range finder is employed to improve the ability of sensing and prediction of the environment, in order to avoid being trapped in a U-shaped obstacle, such as a box canyon. By applying the proposed method, the local minima problem can be solved and the optimal path can be obtained. The effectiveness and superiority is proven by theoretic analysis and simulations.

Key words: Improved dynamic window approach, obstacle avoidance, mobile robot, laser range finder

1. Introduction

For autonomous mobile robots, obstacle avoidance is the basic requirement for moving safely and executing tasks [1]. The two most used methods for avoiding obstacles are the artificial potential field (APF) and grid-based vector field histogram (VFH) [2–5]. The APF will control the motion by use of the sum of attractive and repulsive forces from goal and obstacles, respectively. However, it compresses all the environment information into a virtual force, which causes the loss of valuable information about obstacle distribution and results in the local minima problem [6]. Furthermore, it may lead to an unstable state in narrow spaces [2]. The VFH has better performance in narrow openings, but it does not consider the robot’s size and kinematics [4]. Some other methods include the curvature-velocity method and basic dynamic window method [7–10], which may also result in local minima problems due to the lack of information about the connectivity of free space.

The dynamic window method is a widely used method for obstacle avoidance, which has good performance when the mobile robot moves at high velocity [8–10]. However, the local minima problem exists and may prevent the robot from real-time stable and smooth avoidance of the obstacle. Traditional strategies such as wall-following and modified APF methods may not solve this problem fast [1,11,12]. In addition, the size of the robot is not considered in these methods, which may lead to unfeasible paths and brings negative effects for global optimal path planning. In [14], Seder and Petrovic proposed a solution that integrates a focused D* search algorithm and dynamic window local obstacle avoidance algorithm with certain adaptations for the

*Correspondence: lightsun@cqu.edu.cn
avoidance of moving obstacles. Brock and Khatib proposed a global DWA that combines motion planning and real-time obstacle avoidance to achieve robust high-velocity, goal-directed, reactive motion for a robot in unknown and dynamic environments [15]. In [16], Arras et al. introduced an approach to obstacle avoidance and local path planning for polygonal robots, where a reduced dynamic window dealing with robot shape and dynamics is utilized.

Moreover, convergence to the goal was theoretically analyzed in [17–20]. Ögren and Leonard integrated the convergent Koditschek scheme with the fast reactive dynamic window approach (DWA) to make the robot attain the goal configuration [17,18]. Vista et al. proposed an objective function for the DWA that holds convergence to the goal [19]. Berti et al. proposed improvements over the dynamic window approach (I-DWA), utilized for computing in real-time autonomous robot navigation [20]. In [20], an objective function involving Lyapunov stability criteria was presented to guarantee the global and asymptotic convergence to the goal while avoiding collisions. In [21], a modified DWA was proposed for obstacle avoidance where stereovision is used. By defining a strict search space, the error of the stereoprocessing is controlled and steering control is smoothed, thus producing the optimal velocities for the robot. However, the local minima problem may still occur and the stereo increases the time and space complexity.

In this paper, an improved DWA is proposed to solve the obstacle avoidance problem. We first detect and analyze the connectivity of free space in front of the robot by a laser ranger finder (LRF), which can prevent the situation of being trapped in a U-shape obstacle. The basic DWA is then modified by considering the size of the robot in order to improve the safety and save time.

The rest of this paper is organized as follows: Section 2 describes the models of the environment and the robot. Section 3 describes the proposed improved dynamic window approach. In Section 4, simulations are conducted and the result is presented and discussed. Finally, the conclusion and future work are addressed in Section 5.

2. Problem statement

One of the classic obstacle avoidance methods is the dynamic window approach, which was first proposed by Fox et al. in 1997 [8]. The method is derived directly from the motion dynamics of the robot, in which the limitations of velocity and acceleration are considered. First, a velocity vector \((v, w)\) is defined where \(v\) is the heading velocity and \(w\) is the rotational velocity. Then, to avoid colliding with obstacles, an admissible speed set is defined as

\[
V_a = \{(v, w) | v \leq \sqrt{2 \text{dist}(v, w)} \dot{v}_b \land w \leq \sqrt{2 \text{dist}(v, w)} \dot{w}_b \},
\]

where \(\text{dist}(v, w)\) is the closest distance from the robot to the obstacle, and \(\dot{v}_b\) and \(\dot{w}_b\) are corresponding accelerations for breakage. Eq. (1) can guarantee that the robot stops without hitting an obstacle.

When considering the constrained accelerations of the motors, the whole search can be reduced to the dynamic window that involves only the velocities that can be reached within the next time interval. The dynamic window \(V_d\) is defined as

\[
V_d = \{(v, w) | v \in [v_a - \dot{v}t, v_a + \dot{v}t] \land w \in [w_a - \dot{w}t, w_a + \dot{w}t] \},
\]

where \(t\) is the time interval during which \(\dot{v}\) and \(\dot{w}\) are applied and \((v_a, w_a)\) is the actual velocity. Eq. (2) shows that within the next time interval all the area the robot can reach is inside the dynamic window and thus obstacle avoidance outside the window can be ignored. As shown in Figure 1, the restricted search space
is \(V_r = V_s \cap V_a \cap V_d \), where \(V_s \) contains all the available velocities. Finally, we choose a suitable value from \(V_r \) as the velocity in next time interval. To optimize the movement, we build an object function

\[
G(v, w) = \alpha \cdot \text{heading}(v, w) + \beta \cdot \text{dist}(v, w) + \gamma \cdot \text{vel}(v, w),
\]

which will be maximized. In Eq. (3), \(\text{heading}(\nu, w) \) is used to measure the progress towards the goal, which is maximal when the robot moves directly to the goal. \(\text{dist}(\nu, w) \) is the closest distance to the obstacle and \(\text{vel}(\nu, w) \) is the forward velocity. \(\alpha \), \(\beta \), and \(\gamma \) are the weights.

This dynamic window approach has been proven to be well suited for robots operating at high speed and thus is widely applied. However, the local minima problem will occur since this method only takes into account
the admissible velocities within the dynamic window, while the connectivity of the free space is not considered. Moreover, due to not considering the size of the robot, the path planned may not be optimal. In the case shown in Figure 2, when the DWA is utilized, the robot will abandon the preplanned path (the dashed arrow) because of the casual occurrence of obstacle A. Then the robot moves to the goal by following the newly planned path (the red line), which is much longer than the preplanned path. It is feasible for the robot to pass the opening between obstacles A and B. To solve this problem, we will take into account the size of the robot and the real-time sensing information.

3. Improved dynamic window approach
3.1. LRF-based traverse feasibility analysis

The LRF is a time of flight-based sensor that provides precise distance of obstacles within a range. Compared with image-based sensors, the measurement is not influenced by light, and it has the advantage of high accuracy [13]. A typical LRF, SICK LMS200, is used to check the environment information. With each turn the LMS200 can get 181 values from the distance to obstacles with an angular range from 0° to 180° and the resolution is 1°. The maximum measurement distance is 8 m and the distance resolution is 15 mm. The data obtained can be expressed using a polar coordinate method, e.g., the i-th distance value s_i is

$$s_i = (\rho_i, \theta_i)^T, i = 1, ..., N,$$ (4)

where ρ_i is the distance between the sensor and the obstacle, and θ_i is the relative angle. The model of the LRF is shown in Figure 3.

![Figure 3. The model of a laser range finder.](image)

The environment is described in a 2-dimension Cartesian coordinate system. Therefore, we use Eqs. (5) and (6) to map s_i into the robot’s coordinate system and further convert it into the global coordinate system (GCS):

$$\begin{cases} x' = d + \rho \sin \theta \\ y' = -\rho \cos \theta \end{cases},$$ (5)

$$\begin{cases} x = x_R + \sqrt{x'^2 + y'^2} \cos(\alpha + \alpha') \\ y = y_R + \sqrt{x'^2 + y'^2} \sin(\alpha + \alpha') \end{cases},$$ (6)

where (x', y') is the location of the obstacle in the robot’s coordinate system (RCS), and d is a constant that is the difference between the original points of the RCS and the sensor’s coordinate system (SCS), which is obtained by the robot’s physical structure. (x_R, y_R) and (x, y) represent the robot’s coordinates in RCS and GCS. α is the angle of the robot’s heading direction, and $\alpha' = \arctan(\frac{x'}{y'})$. The coordinates GCS $(X-O-Y)$,
RCS($X_R-O_R-Y_R$), and SCS($X_S-O_S-Y_S$) are shown in Figure 4. Finally, the SCS is converted into a grid-based map by

\[
\begin{aligned}
 x_g &= \text{int}\left(\frac{x_w}{w}\right) \cdot w + \text{int}\left(\frac{y_w}{w}\right), \\
 y_g &= \text{int}\left(\frac{y_w}{w}\right) \cdot w + \text{int}\left(\frac{y_w}{w}\right),
\end{aligned}
\]

where \(w\) is the width of the grid and \((x_g, y_g)\) is the grid’s coordinate in the GCS.

3.2. The improved dynamic window approach

The key to the improved dynamic window approach is the sensing of obstacles. We use a LRF, SICK LMS200, to measure the distance to obstacles. By using the scanned data, the analysis of traverse feasibility is conducted as shown in Figures 5 and 6. In Figure 5, the LMS200 is mounted in the front of the robot. The scanning area is divided into 6 regions, which are \(A, A', B, B', C,\) and \(C'\) respectively. For simplicity, we use \(AA', BB',\) and \(CC'\) to describe the regions \(A\) and \(A', B\) and \(B',\) and \(C\) and \(C',\) respectively. Thus, the angular ranges of \(AA', BB',\) and \(CC'\) are obtained as

\[
\text{Figure 5. Partition of scanning regions.}
\]

\[
\text{Figure 6. The robot and the laser beams.}
\]
\[Ra(\mathbf{A}'A') = [0, 30^\circ) \cup (150^\circ, 180^\circ)\]
\[Ra(\mathbf{B}'B') = [30^\circ, 70^\circ) \cup (110^\circ, 150^\circ)\]
\[Ra(\mathbf{C}'C') = [70^\circ, 90^\circ) \cup (90^\circ, 110^\circ) = [70^\circ, 110^\circ]\]

where \(Ra(\cdot)\) represents the angular range of the corresponding region.

Figure 6 shows the model of the robot and laser’s beam. The robot is modeled as rectangular, which is a typical model for robots. It is approximated to be a cylinder of size \(D \times L\) and a safety clearance radius \(\delta\) for movement, where \(\delta\) depends on the velocity vector \((v, w)\). In addition, three beams, \(l_i\), \(l_j\), and \(l_k\), are shown in Figure 6. We define \(d\) as the distance between the two points produced by beams \(l_i\) and \(l_j\) shooting on obstacles, and then we obtain
\[d = \sqrt{\rho_i^2 + \rho_j^2 - 2 \cos(\theta_j - \theta_i) \rho_i \rho_j}\]

However, if one beam (e.g., \(l_k\)) cannot shoot anything, it means that the obstacle is out of the laser’s range, and then we denote \(\rho_k = \infty\).

As shown in Figure 7, with the partition of scanning regions \(\mathbf{A}'A'\), \(\mathbf{B}'B'\), and \(\mathbf{C}'C'\), the process of traverse feasibility analysis is executed as follows:

1. Region \(\mathbf{A}'A'\) is a protection area, which is used to prevent the robot from bumping into the obstacles on its two sides. Denote \(\rho_1\) and \(\rho_{181}\) as the two measured distances of two beams of \(0^\circ\) and \(180^\circ\). If \(\rho_1 = \infty\) and \(\rho_{181} = \infty\), the robot can move safely. If \(\rho_1 = \infty\) and \(\rho_{181} \neq \infty\), the robot should rotate left, and if \(\rho_1 \neq \infty\) and \(\rho_{181} = \infty\), the robot should rotate right. When \(\rho_1 \neq \infty\) and \(\rho_{181} \neq \infty\), the robot needs to stop or move backwards if
\[(\rho_1 + \rho_{181}) \leq c(D + \delta),\]

where \(c\) is a parameter that is determined by the robot’s physical structure. When \((\rho_1 + \rho_{181}) > c(D + \delta)\), if \(\rho_1 \leq \rho_{181}\), the robot will rotate left; otherwise, it will rotate right.

2. Region \(\mathbf{B}'B'\) is a proximal prediction area. First we find out the minimal values \(\rho^\text{min}_B\) and \(\rho^\text{min}_{B'}\) in divisions \(\mathbf{B}\) and \(\mathbf{B}'\), respectively. Then with Eq. (9) we can obtain \(d_{BB'}\). Then the robot can move forward if
\[d_{BB'} > \sqrt{c^2(D + \delta)^2}.\]

Otherwise, the robot cannot pass this narrow area and path replanning is needed.
(3) Region CC' is a distal prediction area, which implies the connectivity and describes the width $d_{CC'}$ that the robot can pass through the narrow area between obstacles of the distal region in the robot’s forward motion. In order to obtain $d_{CC'}$, it is necessary to search the first noninfinity values ρ_C^1 and $\rho_C^{1'}$, in region C and C', respectively. If $\rho_C^1 \leq \rho_C^{1'}$, we find out the minimal value ρ_C^min in region C' and thus we obtain $d_{CC'}$ with ρ_C^1 and ρ_C^min and corresponding angles θ_C^1 and θ_C^{min}. However, if $\rho_C^1 > \rho_C^{1'}$, $d_{CC'}$ is computed with ρ_C^min and $\rho_C^{1'}$, and the corresponding angles θ_C^min and $\theta_C^{1'}$. Similarly, if

$$d_{CC'} > \sqrt{c^2(D + \delta)^2}, \quad (12)$$

the robot can move forward; otherwise, it needs to replan the path. If a noninfinity value is not found in region CC', the free space in this region is wide enough to be passed through. However, if this happens in regions BB' and CC', there may exist a local minimum area, and thus the robot should replan a local path to avoid the local minima.

When a dynamic obstacle is found that does not exist in the environment map, the obstacle avoidance mechanism works, which can be described as follows:

Step 1: The robot avoids collision with unforeseen obstacles by analyzing region AA'.

Step 2: Predict the feasibility of passing through the planned path by analyzing region BB'. If neither ρ_B^min nor $\rho_B^{1'}$ exist, go to step 3. If both ρ_B^min and $\rho_B^{1'}$ exist and Eq. (11) becomes true, go to step 3; otherwise, go to step 4.

Step 3: If neither ρ_C^min nor $\rho_C^{1'}$ exist, go to step 4. If both ρ_C^min and $\rho_C^{1'}$ exist and Eq. (12) is true, then go to step 5; otherwise, go to step 4.

Step 4: Replan the local path to avoid collision with obstacles since the opening gap between the obstacles is too narrow to pass through.

Step 5: Return to step 2.

In order to improve the ability to pass the openings between obstacles by traverse feasibility analysis above, a new feasibility evaluation function, $f(v, w, s)$, is defined as

$$f(v, w, s) = \alpha \cdot \text{heading}(v, w) + \beta \cdot \text{dist}(v, w) + \gamma \cdot \text{vel}(v, w) + \varepsilon \cdot \text{width}(v, w, s), \quad (13)$$

where $\text{heading}(v, w)$ is the heading direction, $\text{dist}(v, w)$ is the closest distance to obstacles, and $\text{vel}(v, w)$ is the velocity vector. s is the sensing data, ε is the weight, and $\text{width}(v, w, s)$ is

$$\text{width}(v, w, s) = \begin{cases} l, & \text{if } d_{AA'} > c(D + \delta) \forall \rho = \infty \in AA' \setminus \text{ or } d_{AA'} \leq c(D + \delta) \setminus \in AA' \setminus \text{ or } \gamma \cdot \text{vel}(v, w) + \varepsilon \cdot \text{width}(v, w, s), \quad (13) \\
0, & \text{if } d_{AA'} \leq c(D + \delta) \end{cases} \quad , \quad (14)$$

where l is

$$l = \begin{cases} \frac{c^2(D + \delta)^2}{d_{BB'} d_{CC'}}, & \text{if } d_{BB'} > c(D + \delta) \text{ and } d_{CC'} > c(D + \delta); \\
\frac{c(D + \delta)}{d_{BB'}}, & \text{if } d_{BB'} > c(D + \delta) \text{ and } \rho = \infty \in CC'; \\
0, & \text{else.} \quad (15) \end{cases}$$

The parameter $\text{width}(v, w, s)$ determines the possibility to pass through the opening area between obstacles. The situation $\text{width}(v, w, s) = 0$ implies that the robot cannot pass through the opening area between obstacles, and thus it needs to replan a new path. When $\text{width}(v, w, s) \neq 0$, the robot is able to pass through and the motion is controlled by parameters α, β, γ, and ε.
4. Simulation and result
Simulations are conducted in MATLAB and parameters are set as $\alpha = 0.5$, $\beta = 0.2$, $\gamma = 0.1$, $\epsilon = 0.2$, $\omega = 10$ cm, $D = 6$ cm, and $L = 10$ cm. The robot moves at the speed of 15 cm/s when the free space in front of the robot is wide enough to pass. When closing to any obstacle, the robot moves at the speed of 10 cm/s, and when the robot needs to rotate, the forward velocity and rotation velocity are set as 5 cm/s and $\pi/4$ rad s$^{-1}$. In simulations, the DWA and the proposed improved dynamic window approach (IDWA) are applied respectively for each case. Simulation results are shown in Figures 8–10.

Figures 8 and 9 show the result that applies DWA and IDWA, respectively. The major difference occurs when facing obstacles C and D. By using DWA, the robot moves around obstacle C according to the optimal decision. However, using IDWA, Figure 8b shows that the robot can pass the narrow passage between obstacles C and D after taking into account the size of robot. Thus, the path becomes much longer according to DWA.

The result of simulation II is shown in Figures 9a and 9b, which use DWA and IDWA, respectively. Compared with simulation I, the space between C and D becomes larger and there is a U-shaped trap between
obstacles E and F. We can see from Figure 9 that the robot can pass through the gap between C and D in both cases. However, when facing the U-shaped local minima, DWA cannot make the robot sense this trap before entering it, which is shown in Figure 9a. Thus, the robot must turn around and replan the path to the goal, which costs more time and makes the robot traverse longer. In Figure 9b, by employing IDWA, the robot will find the U-shaped trap before moving into that area and replan the path to the goal in a timely manner, which saves a lot of time.

![Figure 9](image1.png)

Figure 9. Result of simulation II.

Conclusion and future work

This paper proposes an improved DWA to solve the problem of obstacle avoidance. The major modification lies in the consideration of the size of robot and the development of a new feasibility evaluation function of the width of the opening space between obstacles. The simulations show that it can solve the local minima problem and produces an optimal path to the goal. Moreover, we list the time cost and the total path length in each case in the Table, in which comparison implies that by applying IDWA, the robot spends less time, and the path length is much shorter. In all, IDWA proves to be better than DWA.

<table>
<thead>
<tr>
<th>Simulations</th>
<th>DWA</th>
<th>IDWA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path length (cm)</td>
<td>Time (s)</td>
</tr>
<tr>
<td>I</td>
<td>512</td>
<td>54</td>
</tr>
<tr>
<td>II</td>
<td>486</td>
<td>46</td>
</tr>
<tr>
<td>III</td>
<td>544</td>
<td>68</td>
</tr>
</tbody>
</table>

Table. Comparison of simulation results.

This paper proposes an improved DWA to solve the problem of obstacle avoidance. The major modification lies in the consideration of the size of robot and the development of a new feasibility evaluation function of the width of the opening space between obstacles. The simulations show that it can solve the local minima problem...
and improve the ability to deal with narrow passages, and thus proves to be more capable of global optimal path planning while avoiding obstacles. In future work, a more complicated environment will be employed to verify and improve the proposed strategy. Finally, we will apply it to a real robot.

Acknowledgment
This work was financially supported by the Natural Science Foundation of the Chongqing Municipal Education Commission, China (Grant No. KJ1403209).

References

