Abstract: The utilization of a DC-link transmission corridor of embedded VSC HVDC for a DC power injection from renewable energy sources to increase the power flow capability and AC network stability support is a promising technology. However, DC faults on the DC transmission line are likely to threaten the system’s operation and stability, especially when the DC power injection exceeds certain limits. A DC single line-to-earth fault is the most likely fault scenario and its effect on the VSC HVDC operation will depend on the earth-loop impedance. Adding an injection point on the DC-link will reduce the earth-loop impedance, hence imposing a danger of increasing the earth fault current. Therefore, in this paper, a VSC HVDC with a DC power injection on the DC-link is studied, the DC-line-to-earth fault is analyzed in the time domain, and its effects on the DC and AC sides of the system are presented. The analysis is based on a developed state-space representation of the system under a single-line-to-earth fault. The zero-input zero-state (ZIZS) response is used to find the solution of the state-space representation. In order to correlate the state-space solution with a simulation, the system is modeled in MATLAB/Simulink. Interestingly, it was observed that a quick recharging of the DC-link capacitor due to a power injection created an additional damping of the postfault oscillations of the AC-side power angle and the DC-side voltage and power oscillations, hence enhancing transient stability.

Key words: Transient stability, voltage source converter, DC power injection

1. Introduction

Embedding a voltage source converter high voltage direct current (VSC HVDC) in AC networks opens up new possibilities to enhance the operation of smart transmission grids with improved transient stability, increased power transfer capability, capacity utilization, and delivery efficiency [1]. Moreover, VSC HVDC (HVDC plus or HVDC light) with a long DC transmission link in power systems will facilitate power injections and tap-offs on the DC-link resulting in multiterminal systems for more power transfer capability, support, and supply to disperse rural or electrification loads [2]. The technology of multiterminal HVDC systems has been considered in the literature [3–7] with the view of control coordination among all terminal stations.

However, most of the VSC HVDC systems are two-terminal or point-to-point connection. Here are several examples: 300 MW, 350 kV Caprivi link of Namibia; 400 MW, 200 kV US-East Bay Oakland; 400 MW, 150 kV NordE.ON1 Germany; 350 MW, 150 kV Estlink Estonia Finland-Espoo; 200 MW, 150 kV Murray link Australia; etc. These two-terminal DC-links were generally not designed for the connection of distributed generators [8].
Connecting a generation scheme to any transmission or distribution system entails taking into consideration certain technical issues such as [9,10]: the thermal rating of the equipment, system fault levels, stability, reverse power flow capability, line-drop compensation, steady-state voltage rises, losses, power quality (such as flicker, harmonics), and protection. The main requirement for a DC power injection on the DC-link transmission corridor of VSC HVDC is injecting a strictly locally controlled power that will not interfere with the main HVDC system control.

In [11], using the principle of uniform loading, a DC power injection limit that could be accepted at any point on the DC-link of a VSC HVDC transmission corridor without affecting the main VSC HVDC control was proposed. However, there is a need to investigate the transient stability of this system during power injection. The degree of transient stability will depend on the location and nature of the disturbance in addition to the initial operating point [12].

Faults may occur at the AC side of the VSC HVDC transmission or on the DC-link transmission corridor, and their stability responses will differ. In [13], it was indicated that if a severe disturbance threatens the system’s transient stability on the AC side, the VSC HVDC can help maintain a synchronized power-grid operation by fast power run-up or run-back control functions. On the other hand, VSCs are vulnerable to DC cable short-circuits and ground faults due to a high discharge current from the DC-link capacitance. Therefore, DC faults on the DC transmission line are likely to threaten the system’s operation and stability, especially when the DC power injection exceeds a certain limit.

The effect of this DC-line-to-earth fault on the VSC HVDC operation will also depend on the earth-loop impedance. Various works [14–16] have been carried out on power injection or tapping on the DC-link of the VSC HVDC transmission, but the transient stability of the system under DC fault conditions needs to be addressed. Moreover, most researchers [17–19] have based their DC fault analyses on simulations alone.

In this paper, a time-domain transient stability analysis of VSC HVDC during power injection is presented. In the analysis, a state-space representation of a DC-link single-line-to-ground fault during DC power injection is developed. In addition, the zero-input zero-state (ZIZS) response is used to find the solution of the state-space representation. In order to correlate the time-domain solution with a simulation, a two-terminal VSC HVDC with a DC link power injection is developed in the MATLAB/Simulink environment for this study.

2. A VSC HVDC system with DC-power injection

Figure 1 shows a typical embedded VSC HVDC that consists of two main converter stations; one station operates as a rectifier and the other operates as an inverter station. The coordination of active power control between the stations is realized by designing only one converter that controls the DC-side voltage, whereas the other converter regulates the active power. A constant DC voltage control gives a slack bus, which will result in an automatic balance of active power flow between stations [20]. The injection station has its own local control, which should not interfere with the main converter controls. The generator is in stable operation at a phase angle of δ_1 compared with the VSC bus, i.e. the voltage at generator bus E_1 is leading the voltage at converter bus U_1 by an angle of δ.

Introducing DC power on the DC-link and increasing its power injection could reach such an extent that the direction of power flow of the main system could be reversed, causing a net voltage rise at the injection bus and leading to instability.
The proposed injection limit is a function of the control parameters of the main converter and the DC-link parameter as shown in Eq. (1).

\[P_{\text{inj_limit}} = \varepsilon P_{\text{ref}}, \]

where

\[\varepsilon = \frac{U_{\text{dcmax}} (U_{\text{dcmax}} - U_{\text{dcref}})}{r x} + \left(1 - \frac{x}{2L}\right) \frac{U_{\text{dc2}} I_{\text{dc2}}}{X_{\text{th}} \sin \delta_{\text{th}}} \]

\[\text{where} \]

- \(P_{\text{inj_limit}} \) = the maximum power injection for unity reference power of the main control
- \(U_{\text{dcmax}} \) = the upper voltage regulation limit in p.u. specified in the control
- \(U_{\text{dcref}} \) = the reference voltage in p.u.
- \(r \) = resistance per kilometer of the line
- \(x \) = the distance to the injection station from bus 1
- \(L \) = total length of the DC-link
- \(U_{\text{dc2}} \) = converter AC2 output voltage
- \(E_{\text{2}} \) = AC2 bus voltage
- \(X_{\text{th}} \) = the thevenin equivalent reactance of the AC system
- \(U_{\text{dc2}} \) = p.u. upper voltage regulation (limit in p.u specified in the inverter control)
- \(I_{\text{dc2}} \) = \(I_{\text{rated}} \) = p.u. current reference limit (current set point specified in the inverter control)

3. VSC system DC faults

It is quite true that numerous precautions are taken to ensure the protection of HVDC cables against line faults. Such protections include cable armoring and insulation for submerged cables. However, human and natural factors such as cable deterioration, cable aging, weather, and ocean currents and waves can stress the cable, resulting in insulation breakdowns or potentially broken cables [21]. DC line faults could be line-to-line or line-to-earth faults. However, a single line-to-earth fault is a more likely fault scenario than a line-to-line fault. The occurrence of a DC fault on the DC link of a VSC HVDC will result in fast discharging of the DC-link capacitors and a large AC-side current flowing to the DC link fault point through the antiparallel (freewheeling) diodes of the converter [22].
4. Transient analysis of a single DC-line-to-earth fault

4.1. State-space representation during a DC power injection

In this section, a transient response from a state-space representation of a single DC-line-to-earth fault during a DC power injection is presented.

The behavior of the system (Figure 2) under earth fault depends on the earth-loop impedance. As a result, the analysis of the single-line earth fault depends on the earthing system of both the main stations and the injection station. The possible earthing points are the neutral of the step-up transformer, the earthing of the DC link midpoint, and the earthing of the injection station. An earth fault will form an earth loop with the earthing of these earthing points [22].

When a line-to-earth fault occurs, the voltage at the point of fault drops significantly, resulting in a high DC fault current. This rise in the DC fault current will result in blocking the IGBTs and hence a rise in the AC fault current. The blocked voltage source will act like an uncontrolled rectifier with the DC-link voltage changing to the rectified voltage, so the current will flow through the diodes as shown in Figure 3. Figure 4 shows the equivalent circuit for the VSC HVDC with a DC power injection under a DC line to earth fault. The earth fault resistance R_f is usually from ohms to hundreds of ohms [23]. The line is modeled by a lumped parameter R-L element.

In order to analyze the response of the system, zero-input and zero-state solutions of the system can be found if the state space representation is known.

Therefore, the state space of the equivalent circuit can be derived in state space as follows:
Applying Kirchhoff’s laws on each node:

Node 1:

\[i_{c1} = i_{Lac} - i_{Ldc1} \Rightarrow C_1 \frac{dv_{c1}}{dt} = -i_{Ldc1} + i_{Lac} \] \hspace{1cm} (2)

\[v_{Ldc1} = v_{c1} - v_{ci} - v_{Rdc1} \Rightarrow \frac{dv_{Ldc1}}{dt} = \frac{1}{L_{dc1}} (v_{c1} - v_{ci} - R_{dc1} i_{Ldc1}) \] \hspace{1cm} (3)

Node 2:

\[i_{c2} = i_{Ldc1} + i_{inj} - i_{Ldc2} \Rightarrow C_2 \frac{dv_{ci}}{dt} = i_{Ldc1} + i_{inj} - i_{Ldc2} \]

\[\Rightarrow \frac{dv_{ci}}{dt} = \frac{i_{Ldc1} + i_{inj} - i_{Ldc2}}{C_2} \] \hspace{1cm} (4)

\[v_{Ldc2} = v_{ci} - v_{Rf} - v_{Rdc2} \Rightarrow L_{dc2} \frac{di_{Ldc2}}{dt} = v_{ci} - i_{Ldc2} (R_{dc2} + R_f) \]

\[\Rightarrow \frac{di_{Ldc2}}{dt} = \frac{v_{ci}}{L_{dc2}} - \frac{i_{Ldc2} (R_{dc2} + R_f)}{L_{dc2}} \] \hspace{1cm} (5)

\[v_{Lac} = -v_{c1} + v_{g_{a,b,c}} \Rightarrow L_{ac} \frac{dv_{Lac}}{dt} = -v_{c1} + v_{g_{a,b,c}} \] \hspace{1cm} (6)

Since the aim here is to monitor the response of the DC-link voltages and currents and the AC current, the state variables \(v_{c1}, v_{ci}, i_{Ldc1}, i_{Ldc2}, i_{Lac} \) can be solved analytically in the time domain or s-domain. Hence, from Eqs. (2)–(6), the state space of the system is defined by the following equation:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &=Cx(t) + Du(t)
\end{align*}
\] \hspace{1cm} (7)

where:

\(x \) is the state vector \([v_{c1}, v_{ci}, i_{Ldc1}, i_{Ldc2}, i_{Lac}]^T\),

\(A \) is the state matrix

\[
\begin{bmatrix}
0 & 0 & -\frac{1}{C_1} & 0 & \frac{1}{C_1} \\
0 & 0 & \frac{1}{C_1} & -\frac{1}{C_i} & 0 \\
-\frac{1}{L_{dc1}} & -\frac{1}{L_{dc1}} & \frac{1}{R_{dc1}} & 0 & 0 \\
0 & 0 & \frac{1}{R_{dc2}} & 0 & 0 \\
-\frac{1}{L_{ac}} & 0 & 0 & 0 & 0
\end{bmatrix}
\]
NNACHI et al./Turk J Elec Eng & Comp Sci

\[\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/C_i & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/L_{ac} \end{bmatrix}, \]

\(B \) is the input matrix

\[\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \]

\(C \) is the output matrix

\[\begin{bmatrix} 0, i_{inj}, 0, v_{g,a,b,c} \end{bmatrix}^T, \]

\(u \) is the input

\[D \] is the direct transition (or feed through) matrix [0], and \(y \) is the output.

4.2. Solution of the state space

Having the state matrix, the zero-input \((Z_i)\) and zero-state \((Z_s)\) solution of the system can be found. The zero-input solution is the response of the system to the initial conditions, with the input set to zero. The zero-state solution is the response of the system to the input, with initial conditions set to zero. The complete response is simply the sum of the zero-input and the zero-state responses.

To find the \(Z_i\) solution to the system defined in state space, the zero-input problem is given by:

\[\begin{align*}
\dot{x}_{zi} &= Ax \\
y_{zi} &= Cx
\end{align*} \]

with a known set of initial conditions, \(x(0^-) \).

The state transition matrix is an important part of both the zero-input and the zero-state solutions of the state space. The state transition matrix in the Laplace domain, \(\Phi(s) \), is defined as:

\[\Phi(s) = (sI - A)^{-1}, \]

where \(I \) is the identity matrix.

The time-domain state transition matrix, \(\varphi(t) \), is simply the inverse Laplace transform of \(\Phi(s) \).

The first thing is to solve for \(x(t) \) by taking the Laplace transform and solving for \(X(s) \):

\[sX_{zi}(s) - x(0^-) = AX_{zi}(s) \]

\[sX_{zi}(s) - AX_{zi}(s) = x(0^-) \text{ i.e. } sI X_{zi}(s) - AX_{zi}(s) = x(0^-) \]

\[(sI - A) X_{zi}(s) = x(0^-) \]

\[X_{zi}(s) = (sI - A)^{-1} x(0^-). \]

Substituting Eq. (9) in Eq. (11),

\[X_{zi}(s) = \Phi(s)x(0^-). \]
Since \(x(0^-) \) is a constant multiplier, the inverse Laplace Transform is simply

\[
x_{zi}(t) = \varphi(t) x(0^-).
\]

(13)

Therefore, the solution for \(y(t) \) is found in a straightforward way from the output equation:

\[
y_{zi}(t) = C x_{zi}(t) = C \varphi(t) x(0^-)
\]

(14)

Next will be to find the zero-state response of the system. In the Laplace domain the response is found by first finding the transfer function of the system:

\[
H(s) = \frac{Y(s)}{U(s)} = C\Phi(s) B + D,
\]

(15)

\[
Y_{zs}(S) = H(s) U(s).
\]

(16)

In the time domain, Eq. (16) (multiplication in the Laplace domain) yields:

\[
y_{zs}(t) = h(t) \ast U(t) = (C \varphi(t) B + D) \ast u(t).
\]

(17)

The asterisk denotes convolution.

Then the complete response is simply the sum of Eqs. (14) and (17):

\[
y_c(t) = y_{zi}(t) + y_{zs}(t).
\]

(18)

Table 1 shows the parameters used for plotting the solutions (Eqs. (14), (17), and (18)).

<table>
<thead>
<tr>
<th>Elements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of DC-link</td>
<td>950 km</td>
</tr>
<tr>
<td>Distance from VSC1 bus to injection station bus</td>
<td>475 km</td>
</tr>
<tr>
<td>DC-bus capacitor (C_1)</td>
<td>24 (\mu F)</td>
</tr>
<tr>
<td>Injection DC-bus capacitor (C_i)</td>
<td>12 (\mu F)</td>
</tr>
<tr>
<td>DC-line inductance (L_{dc1})</td>
<td>0.00159 \times 475 (H)</td>
</tr>
<tr>
<td>DC-line inductance (L_{dc2})</td>
<td>0.00159 \times 125 (H)</td>
</tr>
<tr>
<td>DC-line resistance (R_{dc1})</td>
<td>0.00139 \times 475 (ohm)</td>
</tr>
<tr>
<td>DC-line resistance (R_{dc2})</td>
<td>0.00139 \times 125 (ohm)</td>
</tr>
<tr>
<td>Earth-fault resistance (R_f)</td>
<td>0.05 (ohm)</td>
</tr>
<tr>
<td>AC line inductance (L_{ac})</td>
<td>0.0487</td>
</tr>
<tr>
<td>AC phase voltage (V_{ga})</td>
<td>400/\sqrt{3} (kV)</td>
</tr>
<tr>
<td>Initial conditions (x(0^-))</td>
<td>[6500;1200; 0; 0;0]</td>
</tr>
</tbody>
</table>

Figures 5–8 show the zero-input, zero-state, and combined state solutions or responses of the state variables \(v_{c1}, v_{ci}, i_{Ldc1}, i_{Ldc2}, i_{Lac} \) obtained from Eqs. (14), (17), and (18), respectively.
Figure 5. Response of DC bus 1 voltage: a) zero-input response, b) zero-state response, c) combined response.

Figure 5a shows the zero-input response of DC-bus 1 voltage and it can be seen that the capacitor is first charged up to 120 kV due to the initial condition and completely discharged. Figures 5b and 5c show the complete draining of DC bus 1 voltage. Figure 6, which shows the response of the injection station bus voltage, depicts a fast charging up to 800 kV due to the power injection and later discharging completely due to the
line-to-earth fault. Figure 7 shows a fast rise in the DC inductor current, which is a result of the reduced fault loop impedance.

More interestingly, Figures 8a–8c show a fast rise in the AC current, which is a result of severe overcurrents due to the discharge of the DC-link capacitances as shown in Figure 8c. Therefore, the converter is defenseless.
against DC faults and it is imperative that the protection system, both on the DC and the AC side of the HVDC, should be very fast, reliable, and sensitive during DC system faults.

![Graphs showing zero input, zero state, and combined responses of the DC inductor current](image)

Figure 7. Response of the DC inductor current: a) zero-input response, b) zero-state response, c) combined response.
4.3. State-space representation when there is no DC power injection station

When there is no power injection station, the earth-loop form shared between the injection station, the DC cable, and the AC source is eliminated. This will lead to an increased impedance of the earth-loop, thereby reducing the earth fault current. In this case, the state space reduces to 3×3 with a state vector $x = [v_{c1}, i_{Ldc}, i_{Lac}]^T$.

Figure 8. Response of the AC inductor current: a) zero-input response, b) zero-state response, c) combined response.

1844
\[A = \begin{bmatrix} 0 & \frac{1}{L_{dc}} & \frac{1}{C_1} \\ \frac{1}{R_{dc} + R_f} & 0 & 0 \\ \frac{1}{L_{ac}} & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1/L_{ac} \end{bmatrix}, \quad u = [0, 0, v_g a, b, c]^T, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]

\(D \) is the direct transition (or feed through) matrix \([0] \), and \(y \) is the output.

\[D \]

\[y \]

\[A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1/L_{ac} \end{bmatrix}, \quad u = [0, 0, v_g a, b, c]^T, \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]

\(D \) is the direct transition (or feed through) matrix \([0] \), and \(y \) is the output.

Figure 9. Response of DC bus-1 voltage: a) zero-input response, b) zero-state response, c) combined response.
Figures 9 and 10 show the ZIZS solution of the system. Figure 9a shows an oscillation of the DC bus voltage at a reduced magnitude when compared with Figure 6a. From Figures 9b and 9c, it can be observed that there is a fast and complete drainage of DC bus-1 voltage. Figure 10 shows a fast rise in the AC current with a lesser magnitude of the zero-input response when compared with Figure 8, and this is due to the fact that the earth-loop impedance has increased.

Figure 10. Response of the AC inductor current: a) zero-input response, b) zero-state response, c) combined response.
5. Simulation

To demonstrate the operation of a VSC HVDC with DC power injection under a DC single-line-to-earth fault, a model was developed in the MATLAB/Simulink environment.

Table 2 shows the simulation parameters of a typical 300 MW, 350 kV Caprivi VSC HVDC transmission system used for the modeling in Simulink.

<table>
<thead>
<tr>
<th>Data</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power rating</td>
<td>300 MW</td>
</tr>
<tr>
<td>Overload rating in monopolar mode</td>
<td>350 MW</td>
</tr>
<tr>
<td>No. of poles</td>
<td>1</td>
</tr>
<tr>
<td>AC voltage</td>
<td>Gerus: 400 kV; Zambezi: 330 kV</td>
</tr>
<tr>
<td>DC voltage</td>
<td>350 kV</td>
</tr>
<tr>
<td>Coupling transformer on both sides (Gerus and Zambezi)</td>
<td>315 MVA</td>
</tr>
<tr>
<td>Length of overhead DC line</td>
<td>950 km</td>
</tr>
<tr>
<td>Switching frequency of converter valve</td>
<td>1150 kHz</td>
</tr>
</tbody>
</table>

The essence of the simulation is to show the effect of DC power injection on both DC-side and AC-side transient stability. During the simulation, a comparison is made on the DC fault analysis for when there is no power injection and when there is a DC power injection above and below the injection limit.

From the control setting parameters of the VSC HVDC transmission system in Simulink with a DC-link of 950 km, the following parameters were used to determine the injection limit:

\[
U_{d_{\text{max}}} = 1.05 \text{ pu}; \quad U_{d_{\text{ref}}} = 0.95; \quad U_{d_{c2}} = 1.05 \text{ pu}; \quad I_{d_{c2}} = 1.1 \text{ pu}; \quad r = 0.0139 \Omega \text{ km}, \quad P_{\text{ref}} = 0.63.
\]

Substituting the control and DC-link parameters in Eq. (1), the DC power injection limit can be calculated as 0.54 p.u. (162 MW).

During the simulation, a single-line-to-earth fault was applied on the positive line of the DC-link at 1.8 s, and the DC breaker opens at 1.9 s and closes at 2 s after the fault has been cleared in 1.92 s.

5.1. DC-side transient stability

Figures 11 and 12 show the DC-side transient response of the power and voltage, respectively. Comparing Figures 11a and 11b, it could be observed that the postfault power oscillation damped faster during power injection.

However, in Figure 11c, during power injection above the limit, \(P_{DC1} \) is seen to be reduced to 177 MW, showing that there is a reverse power flow to station 1, hence violating power stability.

Comparing Figures 12a and 12b, it can be seen that the oscillation of the voltage damped faster during the scenario of power injection below the limit, hence improving voltage stability in the postfault period. During power injection above the limit, it can be seen from Figure 12c that although the oscillation is damped faster, \(U_{DC1} \) and \(U_{DC2} \) are 387 kV and 371 kV respectively—more than the upper voltage regulation limit in p.u. specified in the control, and hence violating the voltage stability of the system.
Figure 11. DC power response: a) no injection, b) injection (161 MW) below the limit, c) injection (194 MW) above the limit.

5.2. AC-side transient stability response

From Figure 13, it is observed that the load angle oscillates during the fault condition period and during the period that the breaker opens.
Figure 12. DC bus voltage response: a) no injection, b) injection (161 MW) below the limit, c) injection (194 MW) above the limit.

However, when the breaker closes at 2 s, the load angle oscillates and is damped faster during the injection scenario, hence improving the transient stability.
Figure 13. Station 2 UPCC and load angle: a) no injection, b) injection below the limit, c) injection above the limit.

6. Conclusion
This paper presented the use of a DC-link of an embedded VSC HVDC transmission corridor to enhance the transient stability of an AC network by DC power injection on the DC-link. VSCs are vulnerable to DC cable short-circuits and ground faults due to the high discharge current from the DC-link capacitance. A DC line-to-earth fault results in a high DC fault current and blocks the VSC IGBTs, and hence the voltage source acts like an uncontrolled rectifier, which results in a rise in the AC fault current. In the analysis, a VSC HVDC
transmission having DC power injection on the DC-transmission corridor was modeled in the time domain. The zero-input zero-state (ZIZS) response was used to find the solution of the state-space representation. The system was also modeled in the MATLAB/Simulink environment. The results show that the power injection created an additional damping of the postfault oscillations of the AC-side power angle and the DC-side voltage and power oscillations, hence enhancing transient stability.

References

