Responses of carbon isotope ratios of C₃ herbs to humidity index in northern China*

Xianzhao LIU¹,²,³*, Qing SU², Chaokui LI², Yong ZHANG², Qing WANG¹

¹College of Geography and Planning, Ludong University, Yantai, P.R. China
²College of Architecture and Urban Planning, Hunan University of Science & Technology, Xiangtan, P.R. China
³State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Water and Soil Conservation, Chinese Academy of Sciences, Yangling, P.R. China

Abstract: Uncertainties would exist in the relationship between δ¹³C values and environmental factors such as temperature, resulting in unreliable reconstruction of paleoclimates. It is therefore important to establish a rational relationship between plant δ¹³C and a proxy for paleoclimate reconstruction that can comprehensively reflect temperature and precipitation. By measuring the δ¹³C of a large number of C₃ herbaceous plants growing in different climate zones in northern China and collecting early reported δ¹³C values of C₃ herbs in this study area, the spatial features of δ¹³C values of C₃ herbs and their relationships with humidity index were analyzed. The δ¹³C values of C₃ herbaceous plants in northern China ranged from −29.9‰ to −25.4‰, with the average value of −27.3‰. The average δ¹³C value of C₃ herbaceous plants increased notably from the semihumid zone to the semiarid zone to the arid zone; the variation ranges of δ¹³C values of C₃ plants in those 3 climatic zones were −29.9‰ to −26.7‰ (semihumid area), −28.4‰ to −25.6‰ (semiarid area), and −28.0‰ to −25.4‰ (arid area). In the semiarid zone, the semihumid zone, and the whole northern area, δ¹³C values of C₃ herbs showed obvious linear negative correlation to humidity indexes (P < 0.05). With the increase of humidity indexes, the average δ¹³C value of C₃ herbaceous plants tended to decrease to different extents. In the arid zone, however, a linear positive correlation was found between them (P < 0.05). With every 0.1 increase in humidity index, the average δ¹³C value increased significantly by 1.3‰.

Temperature is the main reason for different ¹³C fractionation abilities of C₃ herbs occurring in different sampling sites. The highly varying response of δ¹³C of C₃ herbaceous plants to humid index reminds us that δ¹³Cplant-based paleoclimate reconstruction in northern China should be carried out according to the different climatic zones.

Key words: Arid and humid climate zones, C₃ herbaceous plants, carbon isotope, humidity index, northern China

1. Introduction

Over recent decades, stable carbon isotopes (δ¹³C) from terrestrial archives have been used to trace the course of past climatic and environmental changes (Dawson and Siegwolf, 2007; Werner et al., 2012). This is because variations in plant carbon isotope values record a lot of information reflecting past climatic and environmental changes such as temperature, humidity, and precipitation (Saurer et al., 1995; Loader et al., 2007; Dodd et al., 2008; Diefendorf et al., 2010). Consequently, an understanding of factors controlling plant carbon isotope value enhances reconstructions of past climate and ecology using carbon isotope records of ancient terrestrial sediment (Kohn, 2010). The relationships between δ¹³C compositions of vegetations and environmental factors in northern China have been studied by researchers at home and abroad (Su et al., 2003; Wang et al., 2005, 2010; Zhao et al., 2005; Chen et al., 2007; Sun et al., 2007, 2009; Ma et al., 2007, 2012); however, most studies are limited to a certain single climatic or environmental factor, such as air temperature, precipitation (soil moisture), or altitude.

Temperature and precipitation are 2 decisive factors affecting plant growth and vegetation distribution and hence affect the stable carbon isotope compositions of plants. As for plants, temperature can affect their carbon isotope fractionation via the change in biochemical reaction speed during the photosynthesis process (such as the activity of enzymes participating in photosynthesis) and the stomatal conductance of leaves. There are some studies showing that carbon isotope values of C₃ plants were negatively correlated to temperature (Körner et al., 1991; Ning et al., 2002; Li et al., 2009), while there are even more studies indicating that positive correlation existed between carbon isotopes and temperature (Li et al., 1999; Wang et al., 2002; Liu et al., 2007; Lin, 2008). Still, some other studies suggested that there were no links between
δ¹³C and temperature (Zhang et al., 2003; Gebrekirstos et al., 2009; Diefendorf et al., 2010). In addition to differences in carbon physiological metabolism processes of different plant species and genetic characteristics, the uncertainty regarding the relationship between δ¹³C values of C₃ plants and temperature may relate to the difficulty in separating the influence of other environmental factors, such as precipitation (soil moisture), evaporation, and lighting on the δ¹³C values, as well as the interaction of various factors. This is because the temperature factor influencing δ¹³C values of plants is often cross-correlated with other environmental factors.

Farquhar et al. (1982) stated that precipitation, as an important environmental factor, cannot be ignored regarding its influence on the δ¹³C values of plants. For example, carbon isotope values often decrease with the increase of precipitation (Wang et al., 2003, 2008; Kohn, 2010), although there are also some studies obtaining opposite results (Su et al., 2000). Therefore, if the interference of precipitation cannot be eliminated, uncertainties will exist in the relationship between δ¹³C values and environmental factors such as temperature, resulting in unreliable reconstruction of the paleoclimate, extraction of paleoecological information, and explanation of stable carbon isotopic composition (Edwards et al., 2000; Valery et al., 2008). Thus, it is important to establish a rational relationship between δ¹³C values of plants and a proxy for climatic reconstruction that can comprehensively reflect air temperature and precipitation.

The humidity index (HI), a parameter suggested by Hulme et al. (1992), can comprehensively reflect the dry/wet state in that it considers 2 major factors affecting the water and heat balance of land surface, precipitation and potential evaporation, simultaneously. It is thus a rational parameter to be used for analyzing the relationship between climate variable and plant δ¹³C values. So far, however, there are few reports that combined climatic HIs and δ¹³C values.

Northern China is a region with a fragile ecological environment and serious land desertification. The vegetative ecosystem is an obvious indicator of climatic changes. In the present study, in order to provide a reference for climatic reconstruction using the carbon isotope of plants, we calculated the HIs of all sampling sites in different climatic areas in northern China and investigated the spatial features of δ¹³C compositions of C₃ herbaceous plants and their relationships with HIs based on the measured carbon isotopes of plants and results reported at home and abroad.

2. Materials and methods
2.1. Study area and data sources
The study area is located in the arid, semiarid, and semihumid regions of northern China (Figure 1). The

![Figure 1. Distribution of sampling sites in the different climatic areas in northern China. Sample sites are indicated with numbers. 1, Junggar Basin; 2, Urumqi; 3, Fukang; 4, Kami; 5, Jinta; 6, Shandan; 7, Pingchuan; 8, Shapotou; 9, Lanzhou; 10, Su’an; 11, Huangzhong; 12, Yuzhong; 13, Jinxian; 14, Hengshan; 15, Dongsheng; 16, Ejin Horo Banner; 17, Ordos; 18, Jungar Banner; 19, Feng Zhen; 20, Yakeshi; 21, Zhengxiangbai Banner; 22, Duolun; 23, Bairin Left Banner; 24, Jarud Banner; 25, Yulin; 26, Changwu; 27, Xiji; 28, Ulan hot; 29, Arxan; 30, Shenmu; 31, Hequ; 32, Youyu; 33, Muzhi; 34, Genhe; 35, Lochuan; 36, Ansai; 37, Xifeng; 38, Penglai; 39, Linxia; 40, Guyuan; 41, Fuxian; 42, Chengxian; 43, Yangling; 44, Yongshou; 45, Tongchaun; 46, Beijing; 47, Hezuo.](image-url)
semiarid area in northern China is a transition zone, which is a marginal region where the East Asian summer monsoons are getting so weak that the monsoonal rainfall may be extremely low in some years. To the south of this region is the semihumid North Plain, where 50%–60% of annual precipitation falls in July and August and the annual temperature is around 6–8 °C. To the north is the nomadic region, and the annual precipitation decreases from the southeast to the northwest. Due to insufficient rainfall, frequent droughts and overgrazing, the environment in the study area has been recognized as one of the most ecologically fragile zones in China.

A part of the data used in our study was derived from international and domestic literature regarding carbon isotopes of plants in northern China, including carbon isotope data of C₃ herbaceous plants and corresponding geographic data (longitude, latitude, and altitude) of 13 sampling sites (Table 1; Figure 1); the other part of the δ¹³C data originated from 217 plant samples collected from 34 sampling sites in the farming-pastoral ecotone of northern China (Table 1; Figure 1). The climatic data, including the mean annual temperature (MAT), mean annual precipitation (MAP), monthly precipitation, and monthly mean temperature of each sampling site in the sampling year, were provided by the local weather bureau or from the Chinese Climate Center and China Meteorological Science Data Sharing Service System (http://cdc.cma.gov.cn). In addition, the corresponding longitude, latitude, and altitude of each site were measured by portable GPS (Magellan GPS Field PROVTM, USA). The dominant vegetation types of all sites spanned from cold temperate semihumid forest zone to temperate arid and semiarid desert grassland. Detailed information of the sites is given in Table 1.

2.2. Plant sampling and measurement of leaf δ¹³C

In our investigation of 34 sampling sites, plants were sampled in the summer of 2008 between 25 July and 30 August. All plants collected were either the dominant species in the local area or occurred widely in the 3 climatic zones to obtain spatial variations of carbon isotope compositions of the same plant species. In order to minimize the influence of human activity, sunshine regime, and location within the canopy, sampling was restricted to flat, broad, and bright sites far from human habitats. Mature sunny leaves of 118 species of C₃ herbaceous plants were collected. Upon sampling, the number of the same plant species collected in a sampling site could not be less than 5 to 7 individual plants. Depending on the number of leaves of each species, the same number of leaves were collected from each plant and then mixed together as a sample for this species. A total of 217 samples were collected (Table 1).

The plant samples were oven-dried at 70 °C for 48 h and ground to 40 mesh-size. Leaf carbon isotope ratios were determined using a Delta-PlusXP mass spectrometer (Thermo Scientific, Germany) coupled with an elemental analyzer (Flash EA 1112; CE Instruments, UK) in continuous flow mode at the College of Resources and Environment, China Agricultural University. The combustion temperature of the elemental analyzer was 1020 °C. The measurement error was ±0.15‰ and the δ¹³C data were expressed relative to the V-PDB standard.

2.3. Calculation of HI

According to the suggestion of Hulme et al. (1992), the HI can be written as follows:

\[HI = \frac{R}{Pe} \]

where R is the annual precipitation (mm) and Pe is the annual potential evapotranspiration (mm). As Holdridge's scheme has clear applicability and ecological significance (Meng et al., 2004), it is suitable for calculating the potential evapotranspiration and can be expressed as follows:

\[Pe = 58.93 \times ABT \]

where ABT indicates the annual biotemperature (°C). It refers to the average temperature for the vegetative growth of the plants, ranging from 0 °C to 30 °C in general, excluding daily average temperatures below 0 °C and above 30 °C, and hence the formula for calculation of ABT is as follows:

\[ABT = \frac{1}{12} \sum_{i=1}^{12} T \]

where T represents the monthly average temperature higher than 0 °C; however, the monthly average temperature higher than 30 °C shall be regarded as 30 °C and the monthly average temperature lower than 0 °C shall be regarded as 0 °C. Combining Eqs. (1) through (3), we obtain the calculation formula for HI as follows:

\[HI = R \left(\frac{58.93 \times \frac{1}{12} \sum_{i=1}^{12} T}{R} \right) \]

2.4. Statistical analysis

SPSS 12.10 for Windows (SPSS Inc., USA) was used for data correlation analysis, regression analysis, and one-way analysis of variance (ANOVA). If the variance analysis results for the δ¹³C values of all plants in the various climatic zones were significant (P < 0.05), then the least significant range method (Duncan’s new multiple range method) was used for multiple comparison. As the δ¹³C values of plants were affected by mountain trend, microrelief form, and altitude, the carbon isotope data of plants collected from sampling sites on high mountains were avoided as much as possible.
Table 1. Information of the sampling sites.

<table>
<thead>
<tr>
<th>Site no.</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>MAT (°C)</th>
<th>MAP (mm)</th>
<th>Altitude (m)</th>
<th>Averaged δ13C (‰)</th>
<th>Vegetation type</th>
<th>Data source</th>
<th>Sampling date</th>
<th>Climatic region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.92</td>
<td>44.65</td>
<td>8.0</td>
<td>150</td>
<td>477</td>
<td>-26.9 ± 0.85</td>
<td>Herbage</td>
<td>18.05.2006</td>
<td>23</td>
<td>Sun et al., 2009</td>
</tr>
<tr>
<td>2</td>
<td>86.62</td>
<td>42.75</td>
<td>6.4</td>
<td>184</td>
<td>690</td>
<td>-27.1 ± 0.00</td>
<td>Herbage</td>
<td>26.07.1995</td>
<td>1</td>
<td>Feng et al., 2003</td>
</tr>
<tr>
<td>3</td>
<td>87.83</td>
<td>43.17</td>
<td>6.1</td>
<td>164</td>
<td>650</td>
<td>-26.5 ± 1.25</td>
<td>Shrubs</td>
<td>31.07.1997</td>
<td>24</td>
<td>Chen et al., 2002</td>
</tr>
<tr>
<td>4</td>
<td>93.67</td>
<td>42.82</td>
<td>9.8</td>
<td>65</td>
<td>800</td>
<td>-27.6 ± 0.65</td>
<td>Herbage</td>
<td>26.07.2008</td>
<td>8</td>
<td>Observed</td>
</tr>
<tr>
<td>5</td>
<td>98.90</td>
<td>40.00</td>
<td>8.0</td>
<td>154</td>
<td>1250</td>
<td>-26.9 ± 2.34</td>
<td>Shrubs</td>
<td>31.07.1997</td>
<td>8</td>
<td>Chen et al., 2002</td>
</tr>
<tr>
<td>6</td>
<td>101.00</td>
<td>38.17</td>
<td>5.7</td>
<td>177</td>
<td>1764</td>
<td>-25.2 ± 0.49</td>
<td>Shrubs</td>
<td>31.07.2008</td>
<td>3</td>
<td>Observed</td>
</tr>
<tr>
<td>7</td>
<td>100.01</td>
<td>39.33</td>
<td>7.6</td>
<td>186</td>
<td>1547</td>
<td>-25.4 ± 0.49</td>
<td>Shrubs</td>
<td>30.08.2002</td>
<td>2</td>
<td>Su and Yan, 2008</td>
</tr>
<tr>
<td>8</td>
<td>104.95</td>
<td>37.45</td>
<td>9.6</td>
<td>184</td>
<td>1250</td>
<td>-28.0 ± 1.42</td>
<td>Shrubs</td>
<td>11.08.2008</td>
<td>12</td>
<td>Observed</td>
</tr>
<tr>
<td>9</td>
<td>103.83</td>
<td>36.00</td>
<td>6.6</td>
<td>327</td>
<td>1517</td>
<td>-28.0 ± 0.00</td>
<td>Herbage</td>
<td>28.07.2008</td>
<td>1</td>
<td>Observed</td>
</tr>
<tr>
<td>10</td>
<td>101.52</td>
<td>38.65</td>
<td>2.9</td>
<td>380</td>
<td>2204</td>
<td>-25.9 ± 0.05</td>
<td>Herbage</td>
<td>05.08.2008</td>
<td>6</td>
<td>Observed</td>
</tr>
<tr>
<td>11</td>
<td>104.02</td>
<td>36.55</td>
<td>6.6</td>
<td>350</td>
<td>1896</td>
<td>-27.0 ± 0.56</td>
<td>Herbage</td>
<td>30.08.2008</td>
<td>8</td>
<td>Observed</td>
</tr>
<tr>
<td>12</td>
<td>108.50</td>
<td>37.37</td>
<td>7.8</td>
<td>395</td>
<td>1333</td>
<td>-27.3 ± 0.37</td>
<td>Herbage</td>
<td>29.08.2008</td>
<td>6</td>
<td>Observed</td>
</tr>
<tr>
<td>13</td>
<td>109.17</td>
<td>37.28</td>
<td>8.5</td>
<td>390</td>
<td>1019</td>
<td>-26.9 ± 0.45</td>
<td>Herbage</td>
<td>27.08.2008</td>
<td>7</td>
<td>Observed</td>
</tr>
<tr>
<td>14</td>
<td>109.98</td>
<td>39.03</td>
<td>5.4</td>
<td>363</td>
<td>1461</td>
<td>-27.1 ± 0.54</td>
<td>Herbage</td>
<td>26.08.2008</td>
<td>10</td>
<td>Observed</td>
</tr>
<tr>
<td>15</td>
<td>110.05</td>
<td>39.17</td>
<td>6.2</td>
<td>380</td>
<td>1276</td>
<td>-27.2 ± 0.65</td>
<td>Herbage</td>
<td>25.08.2008</td>
<td>9</td>
<td>Observed</td>
</tr>
</tbody>
</table>

...continues...

103
3. Results

3.1. δ13C compositions of C3 herbaceous plants in different climatic zones

Figure 2 shows the average values and ranges of δ13C values of C3 herbaceous plants in northern China as well as in various climatic zones. Overall, the δ13C values in all C3 plant samples in northern China ranged from −29.9‰ to −25.4‰ with an average value of −27.3‰ (n = 327, SD = 1.47), while those in the arid zone of northern China were narrow, mainly between −28.0‰ and −25.4‰ with a mean value of −26.84‰ (n = 81, SD = 1.25), which was slightly more than the average value of −27.2‰ (n = 124, SD = 1.31) obtained via the isotope analysis for the 124 C3 plant samples collected from the semiarid climatic zone and significantly more positive compared with that of the semihumid zones (a mean value of −27.8‰, n = 122, SD = 1.35) in northern China.

3.2. Relationships between δ13C values of C3 herbaceous plants and HIs in different climatic zones

Figure 3 plots the relationships between δ13C values of C3 herbaceous plants as a whole and HIs in different climatic zones. In the arid zone, δ13C of plants as a whole increased significantly with rising HI, with a coefficient of 1.3‰ for every 0.1 increase in HI (P < 0.05; Figure 3a). In contrast to the arid zone, all C3 herbaceous plants in the semiarid and semihumid zones displayed decreasing δ13C with the increase in HI, and for every 0.1 increase in HI, the δ13C value decreased by 1.1‰ for the semiarid zone (Figure 3b) and by 0.4‰ for the semihumid zone (Figure 3c). Remarkable negative relations between plant δ13C values and HI were observed in northern China (Figure 3d).

4. Discussion

4.1. δ13C variation of C3 herbaceous plants

Among many environmental factors, precipitation and temperature are 2 of the most important factors exerting effects on plant δ13C. Except in extremely wet environments, δ13C of C3 plants generally increases with decreasing rainfall (Korol et al., 1999; Wang et al., 2003; Zhang et al., 2003; Wang et al., 2010), although patterns of variation of δ13C in living plants with temperature remain unresolved (Wang et al., 2008; Kohn, 2010). In our study, the 124 C3 plant samples in the semiarid climatic zone were collected from 17 sites, and the MAP of this climatic zone was 200–400 mm. Furthermore, the 122 plant samples from the semihumid climatic zone were mainly collected from the middle part of Shaanxi Province on the Loess Plateau, eastern Gansu, and the southeastern edge of the Inner Mongolia Plateau. The MAP of each sampling site was greater than 400 mm, which ranged basically from 420 mm to 660 mm. However, the 81 sample plants from the arid zone grew in an environment where precipitation is less than 200 mm. Thus, δ13C values of plants in the arid zone were slightly more positive than those in the semiarid and semihumid zones.

As for why the variation range of plant δ13C values in the arid zone was relatively more concentrated, it can be attributed to the climatic environmental conditions of the sampling sites, which were very similar. Statistical analysis was done for the MAT and MAP, and the results showed that the MAP of the sampling sites was 158.0 ± 40.11 mm, the variation of MAT was 5.7–9.6 °C, and the average temperature was 7.53 ± 1.24 °C. These results indicated that the degree of variation in the arid zone was significantly less than that of the semiarid and semihumid zones in northern China (Table 2).

In addition to the variation characteristics of δ13C values of all plants in the study area, we also analyzed the δ13C values of 5 eurytropic C3 species, which were collected from 3 climatic zones in northern China. Figure 4 shows that obvious differences (P < 0.05) existed in the average δ13C values of Chenopodium glaucum, Artemisia lavandulaefolia, Plantago depressa, Artemisia capillaris, and Lepidium apetalum in different climatic zones, which caused the average values of the above plants in the semihumid zone to be slightly less than those in the semiarid and arid zones. This indicated that the carbon isotope compositions of C3 herbaceous plants had consistent variation patterns for both individual plants and plants as a group in different climatic zones, suggesting that changes of precipitation were important for the variation of δ13C values of C3 herbaceous plants in different climatic zones over the whole northern area. Additionally, such significant variance in the carbon isotope compositions of C3 herbaceous plants in different climatic zones also

Figure 2. The spatial characteristics of δ13C values for whole C3 herbaceous plants in the arid and humid climate areas of northern China. Different letters represent significant differences among different climate areas at α = 0.05 level. ASA, all the sampling areas; AA, arid area; SAA, semiarid area; SHA, semihumid area.
Figure 3. Relationships between δ13C values of C₃ herbaceous plants and HI in different climate areas of northern China: a) arid area; b) semiarid area; c) semihumid area; d), all the sampling areas.

Table 2. The average value and variation coefficients of MAT and MAP for all sampling sites in different climatic areas of northern China.

<table>
<thead>
<tr>
<th>Climatic area</th>
<th>Mean value of sites (°C)</th>
<th>CV (%)</th>
<th>Climatic area</th>
<th>Mean value of sites (mm)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arid area</td>
<td>7.53 ± 1.24a</td>
<td>0.165b</td>
<td>Arid area</td>
<td>158.0 ± 40.11c</td>
<td>0.085c</td>
</tr>
<tr>
<td>Semiarid area</td>
<td>5.02 ± 3.09a</td>
<td>0.614a</td>
<td>Semiarid area</td>
<td>360.9 ± 48.13b</td>
<td>0.133ab</td>
</tr>
<tr>
<td>Semihumid area</td>
<td>7.40 ± 4.26a</td>
<td>0.575a</td>
<td>Semihumid area</td>
<td>530.6 ± 80.16a</td>
<td>0.151a</td>
</tr>
</tbody>
</table>

Note: MAT and MAP as in Table 1; CV, coefficient of variation. Different letters indicate significant difference (P < 0.05).

Note: The numbers of sampling sites are the same as in Figure 1; MAT and MAP are the abbreviations of mean annual temperature and mean annual precipitation, respectively. MAT and MAP represent the average values of more than 30 years; dominant vegetation types are from “The Vegetation Atlas of China”.
δ13C values of single China increased with the rising HI, and the fact that the annual precipitation. Therefore, it is possible that the δ13C values of C3 herbaceous plants increased with the increase in relative humidity or evaporation, soil humidity, and pressure of water vapor. In our study, a strong positive correlation was found between plant δ13C-values and HI for the arid zone (R² = 0.6351, P < 0.05); in other words, with the increase in HI, the δ13C-value of all plants as a whole gradually increased. Schulze et al. (1996), Su et al. (2000), and Skrzypek et al. (2007) also observed that δ13C values of C3 herbaceous plants increased with the increase in relative humidity or annual precipitation. Therefore, it is possible that the δ13C values of C3 herbaceous plants in arid zones of northern China increased with the rising HI, and the fact that the δ13C values of single Chenopodium glaucum increased significantly with the increase in HI can be taken as strong evidence (Figure 5a). However, the HI–δ13C correlation for the semiarid and semihumid zones was the opposite, which is consistent with the results of previous research (Li et al., 1995; Sparks and Ehleringer, 1997; Anderson et al., 2000; Wang et al., 2006).

For example, Stuiver and Braziunas (1987) analyzed the relationship between relative humidity and the δ13C value of coniferous forest, which showed high negative correlation; Wang and Han (2001) also found that the δ13C values of several C3 herbaceous plants were obviously more positive in dry seasons than those in rainy seasons. The trend by which δ13C values significantly increased with the decrease of HI might be related to the dry air or insufficient water content in the soil causing the decrease of the stomatal conductance of plants, which meanwhile indicated that these plant species under semiarid and semihumid conditions adapted to the ecological environment of different water contents by adjusting the stomatal conductance to change the water use efficiency.

Although the relationship between δ13C values and HIs varied from zone to zone, it generally represented the variation of carbon isotope compositions of C3 herbaceous plants in northern China according to the change in HIs because annual precipitation gradually decreased from east to west. In this study, the overall trend that δ13C values of C3 herbaceous plants significantly decreased with the increase in HI (R² = 0.1281, P < 0.001) was consistent with the results reported by Wang et al. (2003) that the values of carbon isotopes of 367 C3 herbs samples in northern China were obviously negative with the increase in MAP. Therefore, it was rational to use the δ13C value as a proxy of the climatic HI to study the paleoclimate or paleoenvironment of northern China.

For the single C3 species, Winter et al. (1982) reported that δ13C values of C3 herbaceous plants such as Triticum aestivum and Poa annua were slightly more positive in a low-humidity than in a high-humidity environment. In this study, as statistical analysis could not be done for the vast majority of plants due to the limitation of sample size, only 3 C3 species (Plantago depressa, Chenopodium glaucum, and Lepidium apetalum), which were widely distributed in the same climatic zone with multiple data points, were analyzed. The δ13C values for the 3 plants showed a decrease with the increase in HI, except for Chenopodium glaucum in the arid zone, but the magnitude of descent and degree of relevance between plant δ13C values and the HIs varied, even for the same species, and varied from zone to zone (Figures 5a–5c). This indicated that their sensitivities were different against the HIs, with the reason that δ13C values of the plants were the result of the joint action of the plant species and environmental factors (Yan et al., 1998).

Such differences, expressed by the change in δ13C values due to the HI, might be related to the variances in the carbon isotope fractionation caused by the change of plant physiological characteristics to adapt to the environmental conditions. Additionally, these variances may also relate to the small sample size of individual species. The above different plants and the same species having different δ13C variation rates in different climatic

![Figure 4. The spatial characteristics of δ13C values for individual C3 herbaceous plant in the arid and humid climate areas of northern China.](Image 38x525 to 264x709)
zones reminded us that when using δ¹³C values of plants to reconstruct the paleoclimate and paleoenvironment, choosing the plant species that are the most sensitive to the changes in environmental indicators might gain the most valuable results.

Based on the theories of Farquhar et al. (1982, 1989), when precipitation is insufficient or air humidity is reduced, the stoma of plants close and stomatal conductance is reduced, which can lead to CO₂ concentration decrease in plant leaves and the increase of the carbon isotope ratio of photosynthetic products. The fact that the δ¹³C values of C₃ herbs in the semiarid zone, semihumid zone, and the whole northern area were negatively correlated to HIs provides strong evidence for the above point. However, in the northern arid zone, the influence of HIs on the δ¹³C values was not that simple. Viewed from the whole northern area, as precipitation gradually decreased from east to west the plant δ¹³C values significantly decreased with the increase in HI, but the δ¹³C values in the arid zone showed an ascending trend. A very possible reason why this happens is that the influence of annual temperature on C₃ plant δ¹³C outweighs that of precipitation.

According to Eqs. (1) through (4), the HI is a ratio between annual precipitation and annual maximum
evapotranspiration, while in the arid zone of northern China the annual precipitation was the main factor limiting plant growth. The MAP of each sampling site in this zone varied slightly (Table 2), which to a certain degree eliminated the interference of precipitation. Thus, the change of HI mainly depended on the evapotranspiration, which was closely related to temperature. That is, when the temperature increased, the soil evaporation and transpiration would be intensified, the evapotranspiration would increase, and, hence, the HI would decrease. Simple regression analysis showed that in the northern arid zone, linear negative correlation existed among the HIs, the δ13C values of C₃ herbaceous plants, and the MAT. With the increase in MAT, both HIs and δ¹³C values of C₃ herbaceous plants significantly decreased (Figures 6a and 6b), while the relationships among HIs, δ¹³C values of plants, and MAP were not obvious (Figures 6c and 6d). Thus, the δ¹³C values of C₃ herbaceous plants and HIs were significantly and positively correlated.

Many factors other than temperature and precipitation, such as altitude, longitude, and latitude, can affect plant δ¹³C (Körner et al., 1991; Sparks and Ehleringer, 1997; Li et al., 2009; Wang et al., 2010). Here, we neglected the effects of these factors when establishing relationships between HIs and δ¹³C because we think that these effects are unlikely to affect our results significantly. This consideration is based on the fact that the variations of altitude, longitude, and latitude tend to cause changes in temperature and/or precipitation. Therefore, their effects on plant δ¹³C will be embodied in the effects of temperature and precipitation. Although other environmental factors may also vary with altitude, longitude, and latitude, e.g., changes in atmospheric pressure and solar radiation with elevation, it is generally thought that the altitudinal trend of plant δ¹³C can be attributed mainly to the influence of temperature and/or precipitation rather than to changes in air pressure and solar radiation (Sparks and Ehleringer, 1997; Li et al., 2009; Wang et al., 2010, 2013). In addition, the HI calculated by the Holdridge model may have some limitations, but to a certain extent, it considers the combined influence of precipitation and evaporation related to temperature, wind speed, solar radiation, pressure of water vapor, and other meteorological factors (Wang et al., 2004). Therefore, the variation pattern of δ¹³C values of C₃ herbaceous plants in the whole northern China affected by HIs was actually effective.

Figure 6. Relationships of humidity index and δ¹³C for C₃ herbaceous plants with mean annual temperature (a and b) and mean annual precipitation (c and d) in arid area of northern China.
We here compared the spatial characteristics of the δ13C values in different climatic areas and derived a quantitative relationship between plant δ13C and HI by measuring and collecting the δ13C of a large number of C3 plants growing in northern China. The response of plant δ13C to different climatic areas varies considerably. A strong negative relationship was found between δ13C values of C3 herbaceous plants and HI in the whole of northern China, with a coefficient of −0.16‰ for 0.1 increases in HI. This variation trend was more obvious in the semihumid and semiarid zones. However, the positive correlation was observed in the dry climatic zone. The highly varying response of δ13C of C3 herbaceous plants to the HI demonstrates that δ13C-based paleoclimate reconstruction in northern China should be carried out according to the different climatic zones.

Acknowledgments

This research was supported by a grant from Shandong Province Natural Science Foundation (No.ZR2011DM007). We would like to thank Ma Yan for analyzing stable carbon isotope ratios in the Isotope Lab at the College of Resources and Environment, China Agricultural University. We are also grateful to some scholars for providing the carbon isotope and meteorological data and the 2 anonymous reviewers for their extremely valuable suggestions for improvement of the manuscript.

References

