Jurassic Volcanism in the Eastern Pontides: Is it Rift Related or Subduction Related?

CÜNEYT ŞEN
Department of Geological Engineering, Karadeniz Technical University, TR–61080 Trabzon, Turkey
(E-mail: csen@ktu.edu.tr)

Abstract: The Jurassic volcanic rocks in the centre of the northern zone (south of Trabzon City) provide important constraints on the evolution of Pontides. The investigated volcanic rocks form a transitional series between tholeiitic and calc-alkaline, and is dominated by basalt, basaltic andesite and andesite. Geochemically, they are enriched in LILE and LREE contents and depleted in HFSE [(La/Yb)N= 2.2 – 8.5; (Nb/La)N= 0.1 – 0.77] compared to mid-ocean ridge basalts and have radiogenic Nd isotope ratios of εNd(210 Ma)= -0.72 to 3.24. These trace element and isotope data suggest that these rocks were derived from low degrees of partial melting of spinel lherzolite that was metasomatized by subduction-related fluids and further underwent a degree of fractional crystallization in magma chambers before being extruded at the surface.

Key Words: Eastern Pontides, geochemistry, Sr-Nd isotopes, Jurassic, basalt, Turkey

Introduction

The study area is in the centre of the northern zone (Akın 1978; Gedikoğlu et al. 1978; Özsayar et al. 1981; Bektaş et al. 1999) of the Eastern Pontides (Katı 1966; Yılmaz et al. 1997). The Pontides tectonic belt of northern Turkey tectonically combines three different sectors: the western Pontides, the central Pontides and the Eastern Pontides (Yılmaz et al. 1997). Although their general evolution seems similar, all three sectors have their own distinct evolution stories.

The orogenic belt of the Eastern Pontides is subdivided into two E–W-trending tectonostratigraphic zones: the northern and southern zones. The northern zone of the Eastern Pontides is dominated by Senonian and Middle Eocene volcanic and volcanoclastic rocks. In contrast, pre-Senonian rocks are widely exposed in the southern zone of the Eastern Pontides, which occupied a fore-arc position during the Senonian and underwent much more intensive deformation than the northern zone during the Early Tertiary continental collision (Okay & Şahintürk 1997). The boundary between these zones approximately follows the Niksar-Torul-Ispir line (Okay & Şahintürk 1997; Bektaş et al. 1999).

It is now agreed that the tectonic evolution of Eastern Pontides between the Late Palaeozoic and mid-Jurassic was very similar to that of other sectors of the Pontides (Yılmaz et al. 1997). But the location of the Palaeotethyan suture and its subduction polarity is still disputed (Ustaömer & Robertson 1997). In the light of recent studies, Ustaömer & Robertson (1997) reviewed two fundamentally different views. (i) One school considered that the north Tethyan margin was passive until the Late Jurassic, and hence the Palaeotethys Ocean was subducted southward under the active margin of
Gondwana during the Palaeozoic (Dewey et al. 1973; Şengör et al. 1984; Şengör 1987). During the subduction, a continental sliver rifted off as a result of back-arc extension, opening a new ocean (Neotethys) to the south. This continental sliver was accreted to Laurasia by the Late Jurassic. (ii) The second school regarded the southern margin of Eurasia as an active continental margin associated with terrane displacement, marginal basin formation, and arc genesis (Adamia et al. 1977; Robertson & Dixon 1984; Dercourt et al. 1993). In this model, only one progressively evolving Tethys Ocean existed. Continental slivers rifted off Gondwana, drifted northwest, and were later accreted to the southern margin of Eurasia. In the same study, Ustaömer & Robertson (1997) proposed a scenario in which 'north-facing half-grabens' formed in the north and were filled by turbiditic sediments, debris flows and limestone blocks derived from the carbonate platform in the Central Pontides. Early Cretaceous extension developed above a northward-dipping subduction zone and was a precursor to opening of the Black Sea as a back-arc basin in the Late Mesozoic–Early Tertiary'.

Yılmaz et al. (1997) suggested that the Karakaya marginal basin was generated behind the volcanic arc during southward subduction in the Triassic. After closure of the Karakaya Basin by continuing subduction in the latest Triassic, the Neotethys (the İzmir–Ankara–Erzincan Ocean) opened up as a new basin during the Liassic. On the other hand, Okay (2000) and Okay et al. (2002) thought that an Early–Middle Triassic oceanic plateau (Nilüfer unit) collided with and accreted to the southern continental margin of Laurasia. They concluded that this caused a short-lived orogeny which was completed by the Early Jurassic. However, Golonka (2004) stated that during Late Triassic–Early Jurassic time, several microplates were sutured to the Eurasian margin, closing the Palaeotethys Ocean. He stated that a Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides. Kazmin et al. (1986) also argued that Early Jurassic volcanism (even though it was not so widespread) was related to subduction of the Mesozoic Tethys oceanic crust, whereas Şengör & Yılmaz (1981) believed that most Lower Jurassic volcanic rocks in the Eastern Pontides are of oceanic tholeiite rather than island arc type and are related to Liassic rifting.

The Liassic rift is described by many researchers (Şengör & Yılmaz 1981; Görür et al. 1983; Bergougnan 1987; Yılmaz et al. 1996; Koçyiğit & Altiner 2002). Şengör & Yılmaz (1981) stated that the rift was filled by thick coarse clastic rocks, together with alkaline and tholeiitic lavas. It is also described as the North Anatolian Palaeorift (NAPR) by Koçyiğit & Altiner (2002) in northern Turkey and is interpreted as the south-facing passive continental margin of the northern Neotethys; it developed during the Hettangian. In this basin, the Liassic is characterized by rift-related sediments (Şengör & Yılmaz 1981; Görür et al. 1983; Bergougnan 1987; Yılmaz et al. 1996; Koçyiğit & Altiner 2002) and overlain by typical shelf carbonates. Readers are referred to the most recent literature for information about the geology of Eastern Pontides (Okay & Şahintürk 1997; Ustaömer & Robertson 1997; Yılmaz et al. 1997; Arslan 2005, 2006; Dokuz & Tanyolu 2006; Topuz & Okay 2006; Topuz 2006 and references therein).

Early to Middle Jurassic time is represented by thick coarse clastic rocks, comprising volcanic rocks (tuff, pyroclastic rocks, lava), and interbedded clastic sedimentary rocks that make up a 2000-m-thick sequence on the Hercynian basement in the southern zone of Eastern Pontides. By contrast, in the northern zone the Jurassic is represented by lava flows and pyroclastic rocks. As seen from this summary, there is no agreement among the researchers about the tectonic setting of the Jurassic rocks. The present paper therefore presents the results of a detailed field, petrologic and geochemical study of the volcanic rocks and discusses their origin and tectonic significance in order to shed light on the tectonomagmatic evolution of the Eastern Pontides, and resolve the existing controversies.

Lithostratigraphy of Studied Locations

Field relationships were studied at the centre of the northern part of the Eastern Pontides, in an area south of Trabzon (Figure 1). The stratigraphic succession in the study area ranges from Jurassic to Quaternary (Yılmaz et al. 2005). Jurassic exposures are either bounded by NE–SW-trending transtensional faults (Figure 1) or are intruded by Cretaceous granitoids: the NE–SW-trending faults might have facilitated the emplacement of granitic intrusions.

A thick pillow lava sequence represents the basement in the İkisu Valley (Figure 2). Massive basaltic lava flows, intercalated with tuff horizons, cover the pillow lavas,
Figure 1. (a) Schematic map showing the major tectonic units of Turkey, (b) simplified geological map of the centre of the north zone of the eastern Pontides, sketch maps of studied locations: (c) Düzköy Gürşendağ Yayla, (d) Ziganı Başarköy, (e) İkisu Valley; (f) and Akarsu.
Figure 2. Stratigraphic sections from the studied locations.
and are themselves locally overlain by porphyritic andesite, containing plagioclase phenocrysts up to 2 cm long. Overlying epiclastic rocks with increasing carbonate content conformably grade up into carbonate platform rocks comprising thick-bedded limestones interbedded with dolomites and dolomitic limestones. On the basis of scarce benthic foraminiferal assemblages, this formation is assigned to the Middle Jurassic to Lower Cretaceous (Taşlı 1984; Yalçınalp 1992; Kurt et al. 2005). All these units are cut by the Torul granitoid (Kaygusuz 2000).

The stratigraphic sections at Başarköy (Zigana) and Gürmandağ Yayla (south of Düzköy) are similar to each other (Figure 2). Here, pyroclastic rocks intercalated with dark, aphyric to sparsely porphyritic (less than 5% phenocrysts) and amygdaloidal lavas, make up the basement. Thick, massive/beded limestones overlie the basement volcanic sequence. Yılmaz & Korkmaz (1999) suggested that the volcanic rocks and overlying limestones are allochthonous mega-blocks which are locally interpreted as a para-autochthonous unit.

Although the stratigraphical section of Akarsu (east of Maçka, Figure 2) is almost the same as that measured at Başarköy and Gürmandağ, samples were collected from the blocks of breccia that stratigraphically overlies the carbonate platform. Both laterally and vertically the carbonates pass into calciturbidites, then calciturbidite deposition occurred during the break-up of carbonate platform. The basin was also supplied by detritus derived from the Jurassic volcanic rocks.

Petrography and Mineralogy

The volcanic sequence of the İkisu area is largely represented by pillow basalts and basaltic andesites. Nevertheless, some basaltic massive lava flows and porphyritic andesite flows occur in the upper part of the pillow ed series. The pillow lavas exhibit aphyric to variably plagioclase-phyric texture; the groundmass is intersertal to subophitic, with laths of plagioclase and interstitial clinopyroxene. Quartz-filled amygdules were observed in a few samples from the upper part of the sequence. Massive lavas are represented by moderately porphyritic basaltic andesites, with clinopyroxene and minor plagioclase phenocrysts set within an intergranular groundmass of clinopyroxene and plagioclase microlites. Large (up to 1.5 cm) plagioclase phenocrysts with minor clinopyroxene characterize the porphyritic andesite. Disseminated subhedral Fe-Ti oxides are present in these rocks. All rock types are altered; common alteration products are albite, actinolite-tremolite, chlorite, epidote, prehnite, calcite, quartz, biotite, albite and minor calcite (replacing plagioclase) and actinolite (replacing clinopyroxene).

The volcanic rocks of Başarköy and Gürmandağ Yayla are mainly basaltic and andesitic lavas and tuffs, which have been extensively altered. The samples show microlitic to porphyritic textures. The basic rocks consist mainly of albitized plagioclase (An_{25-35}) and minor amounts of hypidiomorphic augite and idiomorphic Fe-Ti oxides. Microcrystalline plagioclase, augite and magnetite make up the intergranular to cryptocrystalline groundmass. Secondary alteration is more intensive in these rocks and sericite, prehnite, biotite, epidote and minor pumpeyleite, together with calcite and silica varieties, fill veinlets and vesicles or replace primary phenocrysts.
The Akarsu samples were collected from the blocks of the breccia. The basaltic to andesitic blocks are porphyritic and are characterized by large (up to 1 cm) augite, and amphibole (up to 0.5 cm and found only in sample A-4) phenocrysts and slightly albitized plagioclase (An_{25-35}) with minor idiomorphic Fe-Ti oxides. Microcrystalline plagioclase, augite and Fe-Ti oxides make up the intergranular to cryptocrystalline groundmass. Sericite, epidote and calcite fill vesicles or partly replace primary minerals.

Analytical Methods

Thirty-one samples (12 from the Ikisu Valley, 7 from Başarköy, 6 from Gürgen Yayla and 6 from the breccia blocks in the Akarsu area) were analysed for whole rock major-, trace- and rare earth element compositions by using ICP-emission spectrometry and ICP-Mass spectrometry using natural rock standards as reference samples for calibration at ACME Analytical Laboratories Ltd, Vancouver, Canada (Table 1). Major and trace elements were analysed by ICP on pulps after 0.2 g of rock-powder was fused with 1.5 g LiBO_2 and then dissolved in 100 ml 5% HNO_3. Loss on ignition (LOI) is by mass difference after ignition at 1000 °C. Rare earth element analyses were performed by ICP-MS on pulps after 0.25 g rock-powder was dissolved with four acid digestions. Detection limits range 0.01–0.1 wt% for major oxides, 0.1–10 ppm for trace elements and 0.01–0.5 ppm for the rare earth elements. A duplicate rerun of GT-1 is also given in Table 1 as GT-1b, to show analytical sensitivity.

Sr-Rb and Sm-Nd isotopic analyses were performed at IGG (Beijing). Details of the analytical methods can be found in the studies of Chen & Jahn (2004) and Chen & Arakawa (2005).

Results

Major and Trace Element Geochemistry

Major and trace element analyses of rock samples are presented in Table 1. SiO_2 content (49–64 wt% on anhydrous base) indicates that the rocks analysed are mainly basaltic andesites with minor basalts, andesite and dacite (sample A-4 only). Total alkalis have scattered values ranging from 2.5 to 7.5% (on anhydrous bases) and show a weak positive correlation with SiO_2.

Microscope observations suggested that most rocks experienced the extensive low-grade metamorphism that is commonly observed in coeval rocks in the region. Because most of the studied samples have been altered and metamorphosed, their major element compositions may have been modified, so relatively immobile trace elements such as Ti, Zr, Hf, Y, Ta and REE have been used to deduce their tectonic environment.

In the Zr/TiO_2-Nb/Y diagram (Winchester & Floyd 1977) these rocks plot in sub-alkaline basalt, basaltic-andesite and andesite fields (Figure 3a). Zr/Y ratios were used to identify the geochemical affinity of the volcanic rocks, which in turn helps constrain the geodynamic setting. According to Barrett & MacLean (1997), Zr/Y ratios > 7 are calc-alkaline, <4 tholeiitic and between 4 and 7 transitional. Employing these relationships, samples are plotted on Figure 3b. The rocks investigated define an evolutionary trend from tholeiitic to transitional affinity. Some of the Akarsu and Ikisu samples are tholeiitic, with the former having elevated Zr and Y values, probably due to fractional crystallization.

The large ion lithophile elements (LILE) generally show a higher dispersion than the high field strength elements (HFSE) due to their high mobility during alteration. However, despite the dispersion, some correlations were observed. Although most LIL elements are strongly dispersed, positive correlation of SiO_2 with Zr, Nb, Th, Hf and La was observed. The compatible elements Cr, Ni, V and Sc show a negative correlation with SiO_2, with a major dispersion in the case of Cr and Ni and a relatively high correction factor for V and Sc. Low Ni and Cr contents are in agreement with low MgO values.

Trace elements, normalized against normal mid-ocean ridge basalts (N-MORB) using the factors of Sun & McDonough (1989), show a typical pattern of subduction zone magmatism (Figure 4), with enrichments in some LILE (e.g., Rb, Ba) and depletions in relatively HFSE (e.g., Zr, Ti, Y) with respect to N-MORB. The general patterns of all four locations show great similarities (Figure 4). The patterns are characterized by an increase from Rb to Sr and a general decrease in P to Lu. In all samples, Pb shows a positive anomaly whereas Nb-Ta constitutes a negative anomaly where the Nb values are greater than 1.0 in all localities, but Ta is less than 1 in most samples. The volcanic rocks exhibit significant Nb depletion relative
Table 1. Major and trace element analyses for Jurassic volcanic rocks of the eastern Pontides.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>64.41</td>
<td>58.24</td>
<td>52.83</td>
<td>58.37</td>
<td>51.45</td>
<td>51.77</td>
<td>56.48</td>
<td>50.47</td>
<td>55.84</td>
<td>56.09</td>
<td>48.88</td>
<td>54.06</td>
<td>50.36</td>
<td>51.61</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.55</td>
<td>1.21</td>
<td>0.71</td>
<td>1.17</td>
<td>1.15</td>
<td>1.61</td>
<td>1.62</td>
<td>1.09</td>
<td>1.69</td>
<td>1.13</td>
<td>1.19</td>
<td>1.45</td>
<td>1.68</td>
<td>1.12</td>
<td>1.65</td>
</tr>
<tr>
<td>MgO</td>
<td>3.12</td>
<td>3.50</td>
<td>3.52</td>
<td>4.01</td>
<td>6.99</td>
<td>2.93</td>
<td>4.15</td>
<td>3.06</td>
<td>3.83</td>
<td>3.97</td>
<td>2.73</td>
<td>2.42</td>
<td>5.40</td>
<td>3.82</td>
<td>5.65</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.15</td>
<td>0.21</td>
<td>0.17</td>
<td>0.17</td>
<td>0.19</td>
<td>0.10</td>
<td>0.12</td>
<td>0.07</td>
<td>0.05</td>
<td>0.10</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>CaO</td>
<td>6.95</td>
<td>5.82</td>
<td>7.80</td>
<td>4.80</td>
<td>5.40</td>
<td>2.80</td>
<td>7.70</td>
<td>7.70</td>
<td>3.00</td>
<td>7.50</td>
<td>8.30</td>
<td>7.20</td>
<td>7.30</td>
<td>10.40</td>
<td>6.90</td>
</tr>
<tr>
<td>Ba</td>
<td>173</td>
<td>244</td>
<td>156</td>
<td>114</td>
<td>141</td>
<td>127</td>
<td>234</td>
<td>236</td>
<td>114</td>
<td>225</td>
<td>158</td>
<td>167</td>
<td>109</td>
<td>64</td>
<td>266</td>
</tr>
<tr>
<td>Sc</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>39</td>
<td>27</td>
<td>19</td>
<td>19</td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Co</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>22</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>27</td>
<td>41</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>Pb</td>
<td>3.1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
<td>4.5</td>
<td>16.0</td>
<td>15.9</td>
<td>3.3</td>
<td>19.8</td>
<td>3.6</td>
<td>4.1</td>
<td>2.2</td>
<td>7.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Zn</td>
<td>18</td>
<td>20</td>
<td>42</td>
<td>104</td>
<td>101</td>
<td>84</td>
<td>42</td>
<td>43</td>
<td>92</td>
<td>75</td>
<td>43</td>
<td>47</td>
<td>60</td>
<td>88</td>
<td>67</td>
</tr>
<tr>
<td>Ba</td>
<td>173</td>
<td>244</td>
<td>156</td>
<td>114</td>
<td>141</td>
<td>127</td>
<td>234</td>
<td>236</td>
<td>114</td>
<td>225</td>
<td>158</td>
<td>167</td>
<td>109</td>
<td>64</td>
<td>266</td>
</tr>
<tr>
<td>Sc</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>39</td>
<td>27</td>
<td>19</td>
<td>19</td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Co</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>22</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>27</td>
<td>41</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>Pb</td>
<td>3.1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
<td>4.5</td>
<td>16.0</td>
<td>15.9</td>
<td>3.3</td>
<td>19.8</td>
<td>3.6</td>
<td>4.1</td>
<td>2.2</td>
<td>7.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Zn</td>
<td>18</td>
<td>20</td>
<td>42</td>
<td>104</td>
<td>101</td>
<td>84</td>
<td>42</td>
<td>43</td>
<td>92</td>
<td>75</td>
<td>43</td>
<td>47</td>
<td>60</td>
<td>88</td>
<td>67</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.042</td>
<td>0.009</td>
<td>0.009</td>
<td>0.004</td>
<td>0.003</td>
<td>0.005</td>
<td>0.009</td>
<td>0.009</td>
<td>0.006</td>
<td>0.008</td>
<td>0.022</td>
<td>0.014</td>
<td>0.057</td>
<td>0.006</td>
<td>0.011</td>
</tr>
<tr>
<td>LOI</td>
<td>2.10</td>
<td>4.80</td>
<td>7.80</td>
<td>4.80</td>
<td>5.40</td>
<td>2.80</td>
<td>7.70</td>
<td>7.70</td>
<td>3.00</td>
<td>7.50</td>
<td>8.30</td>
<td>7.20</td>
<td>7.30</td>
<td>10.40</td>
<td>6.90</td>
</tr>
<tr>
<td>Ba</td>
<td>173</td>
<td>244</td>
<td>156</td>
<td>114</td>
<td>141</td>
<td>127</td>
<td>234</td>
<td>236</td>
<td>114</td>
<td>225</td>
<td>158</td>
<td>167</td>
<td>109</td>
<td>64</td>
<td>266</td>
</tr>
<tr>
<td>Sc</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>39</td>
<td>27</td>
<td>19</td>
<td>19</td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>Co</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>22</td>
<td>34</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>27</td>
<td>41</td>
<td>27</td>
<td>46</td>
</tr>
<tr>
<td>Pb</td>
<td>3.1</td>
<td>2.3</td>
<td>2.4</td>
<td>2.6</td>
<td>2.5</td>
<td>4.5</td>
<td>16.0</td>
<td>15.9</td>
<td>3.3</td>
<td>19.8</td>
<td>3.6</td>
<td>4.1</td>
<td>2.2</td>
<td>7.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Zn</td>
<td>18</td>
<td>20</td>
<td>42</td>
<td>104</td>
<td>101</td>
<td>84</td>
<td>42</td>
<td>43</td>
<td>92</td>
<td>75</td>
<td>43</td>
<td>47</td>
<td>60</td>
<td>88</td>
<td>67</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.042</td>
<td>0.009</td>
<td>0.009</td>
<td>0.004</td>
<td>0.003</td>
<td>0.005</td>
<td>0.009</td>
<td>0.009</td>
<td>0.006</td>
<td>0.008</td>
<td>0.022</td>
<td>0.014</td>
<td>0.057</td>
<td>0.006</td>
<td>0.011</td>
</tr>
<tr>
<td>LOI</td>
<td>2.10</td>
<td>4.80</td>
<td>7.80</td>
<td>4.80</td>
<td>5.40</td>
<td>2.80</td>
<td>7.70</td>
<td>7.70</td>
<td>3.00</td>
<td>7.50</td>
<td>8.30</td>
<td>7.20</td>
<td>7.30</td>
<td>10.40</td>
<td>6.90</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th></th>
<th>A– andesite</th>
<th>B– basalt</th>
<th>BA– basaltic-andesite</th>
<th>D– dacite</th>
<th>PA– porphyritic andesite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.29</td>
<td>49.93</td>
<td>49.92</td>
<td>51.10</td>
<td>54.76</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.22</td>
<td>1.60</td>
<td>1.43</td>
<td>1.05</td>
<td>0.92</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.60</td>
<td>16.73</td>
<td>17.52</td>
<td>17.61</td>
<td>17.84</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
<td>9.02</td>
<td>11.46</td>
<td>11.19</td>
<td>10.07</td>
<td>10.79</td>
</tr>
<tr>
<td>MgO</td>
<td>5.16</td>
<td>6.92</td>
<td>6.37</td>
<td>6.38</td>
<td>6.03</td>
</tr>
<tr>
<td>MnO</td>
<td>0.25</td>
<td>0.15</td>
<td>0.15</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>CaO</td>
<td>7.67</td>
<td>8.25</td>
<td>9.09</td>
<td>8.72</td>
<td>13.54</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.33</td>
<td>3.80</td>
<td>4.05</td>
<td>4.02</td>
<td>5.98</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.17</td>
<td>0.93</td>
<td>0.47</td>
<td>0.69</td>
<td>0.58</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.28</td>
<td>0.21</td>
<td>0.40</td>
<td>0.18</td>
<td>0.13</td>
</tr>
</tbody>
</table>

TOTAL | 100 | 100 | 100 | 100 | 100 |

Cr₂O₃ | 0.019 | 0.038 | 0.014 | 0.008 | 0.002 |

LOI | 9.60 | 9.40 | 4.20 | 3.80 | 4.00 |

Ba | 367 | 67 | 155 | 326 | 219 |
Sc | 21 | 35 | 28 | 39 | 30 |
Co | 26 | 40 | 20 | 38 | 26 |
Pb | 9.6 | 4.4 | 4.8 | 7.5 | 1.6 |
Zn | 61 | 63 | 75 | 110 | 48 |
Ni | 43.0 | 71.0 | 97.0 | 10.0 | 22.0 |
Cs | 0.5 | 0.6 | 1.8 | 0.3 | 0.9 |
Ga | 15.4 | 17.8 | 18.7 | 14.6 | 17.5 |
Hf | 4.2 | 3.3 | 2.7 | 3.2 | 1.3 |
Nb | 12.6 | 6.5 | 6.3 | 11.8 | 1.3 |
Rb | 34.0 | 18.4 | 23.7 | 4.7 | 16.7 |
Sr | 200 | 257 | 330 | 703 | 546 |
Ta | 0.6 | 0.4 | 0.2 | 0.6 | 0.2 |
Th | 4.5 | 1.3 | 2.5 | 2.1 | 1.5 |
U | 1.3 | 0.3 | 0.5 | 0.3 | 0.5 |
V | 154 | 256 | 283 | 222 | 253 |
Zr | 180 | 119 | 96 | 127 | 57 |
Y | 34 | 30 | 29 | 28 | 23 |
La | 20.70 | 9.10 | 14.70 | 23.60 | 9.20 |
Ce | 45.40 | 21.10 | 31.10 | 51.70 | 21.40 |
Pr | 5.60 | 2.95 | 3.97 | 6.56 | 2.57 |
Nd | 26.30 | 14.70 | 18.80 | 28.50 | 12.10 |
Sm | 5.00 | 3.70 | 4.60 | 5.30 | 3.10 |
Eu | 1.51 | 0.69 | 3.20 | 1.81 | 0.94 |
Gd | 5.39 | 4.64 | 4.28 | 5.30 | 3.65 |
Tb | 0.87 | 0.78 | 0.78 | 0.79 | 0.62 |
Dy | 5.26 | 4.99 | 4.44 | 4.34 | 3.83 |
Ho | 1.04 | 0.92 | 0.92 | 0.89 | 0.84 |
Er | 3.26 | 3.05 | 2.82 | 2.65 | 2.36 |
Tm | 0.50 | 0.46 | 0.46 | 0.38 | 0.34 |
Yb | 3.03 | 2.97 | 3.44 | 2.14 | 2.18 |
Lu | 0.45 | 0.40 | 0.40 | 0.38 | 0.30 |
The enrichment in LILE and LREE with positive Pb and (Sr) and negative Nb, Ta and Ti anomalies, may reflect either the introduction of a subduction component from the downgoing slab or crustal contamination through assimilation-fractional crystallization (AFC) and/or melting, assimilation, storage and homogenization (MASH) processes (Deniel 1998; Kerrich et al. 1999).

The rare earth element (REE) contents normalized against chondrite show a homogeneous pattern, with enrichment in light REE (La to Sm), with respect to heavy REE (Figure 5). Except for the Iksu porphyritic andesites (samples I-22; I-27 and I-35), the volcanic rocks exhibit relatively subparallel patterns, with ratios of (La/Lu)N 3 to 9; (La/Sm)N 2 to 6 and (Lu)N 7 to 14. Sub-parallel patterns imply that these magmas may have experienced shallow level crystal fractionation. But, no significant positive Eu anomalies were observed: the rocks have a slight negative Eu anomaly (with the exception of sample A-11), with the Eu/Eu* ratio ranging from 0.8 to 1.0. In general, the higher REE values correspond to samples richer in SiO₂. The Iksu porphyritic andesites contain higher REE contents than the other volcanic rocks and are characterized by recognizable positive Eu anomalies (Eu/Eu* ratios range 1.2 to 1.6, Figure 5).

Pearce et al. (1999) noted that, because Hf bulk distribution coefficients are intermediate between those of Nd and Sm for melts in equilibrium with residual spinel lherzolite, decoupling of REE and HFSE behavior due to subduction, or other higher-level process may be indicated by a positive or negative Eu anomaly in a chondrite normalized REE pattern. As seen in Figure 5, where Hf is plotted between Nd and Sm, most samples from Zigana and Iksu, and some samples from Akarsu exhibit a negative Hf anomaly. Pearce et al. (1999) stated that negative Hf anomalies were a characteristic of fore-arc lavas.

Isotope Geochemistry

Sr and Nd isotope ratios of the Eastern Pontide Jurassic rocks appear in Table 2 (only two samples, I22 and ZL 5, belong to the northern zone of the Eastern Pontides, the others are all from the southern zone of the eastern Pontides). Corrected for post-crystallization in-situ growth of radiogenic Sr and Nd compositions are also given in Table 2 and plotted in Figure 6. The (87Sr/86Sr)t (eNd, is taken as 210 Ma for the calculations) ratios range 0.704570 to 0.705450 where as the (143Nd/144Nd)t ratios range 0.512280 – 0.512879 (eNd(210 Ma)= - 0.72 to 3.24).

Discussion

Characteristics of the volcanic rocks can generally be attributed to: (1) various amounts of assimilation, fractional crystallization of mantle-derived magma and crustal contamination en route; (2) various degrees of partial melting of a homogeneous source at different pressures and temperatures; and (3) mantle source variability, e.g. metasomatised lithospheric mantle or hybridized source (Bell & Simonetti 1996). Here, characteristics of investigated volcanic rocks are tested according to the attributions above.
Figure 4. N-MORB normalized trace element patterns for Jurassic volcanic rocks of studied locations. Normalizing values are from Sun & McDonough (1989).
Figure 5. Chondrite-normalized REE and Hf patterns of Jurassic volcanic rocks of the north zone of the eastern Pontides. Normalizing values are from Sun & McDonough (1989).
Alteration Effects

Alteration to various degrees of the volcanic rocks in the region can be determined from petrographic observations and relatively high loss on ignition in almost all the samples (2.20 – 8.01%). Some incompatible elements, such as Rb, Ba and K, are known to be mobile during weathering (e.g., Bach et al. 1999), as demonstrated by the considerable scatter in the primitive-mantle-normalized patterns shown in Figure 4. The age-correction of measured $^{87}\text{Sr}/^{86}\text{Sr}$ involves Rb concentrations, and thus their effect on initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios is particularly important. However, the consistency demonstrated by the data set (except for Rb and Ba) in primitive-mantle-normalized patterns (Figure 4), suggests that absolute abundances and ratios of incompatible elements, such as REE, Th, U, Nb, Ta, Zr, Hf, Y, Ti, are the least sensitive to weathering. This is supported by a large number of studies (Jochum et al. 1991; Deniel 1998; Kerrich et al. 1999). Accordingly, the following discussions focus on these immobile elements and $\varepsilon\text{Nd}(t)$ value.

Crustal Contamination and Magma Fractionation

The rocks have high Th content and Th/Ta ratios of 2.5 – 23.0 (avg. 7.5 ± 4.3, Table 1), but relatively constant (Nb/La)$_N$ (avg. 0.47 ± 0.17), $^{87}\text{Sr}/^{86}\text{Sr}(t)$ ratios and $\varepsilon\text{Nd}(t)$ values irrespective of SiO$_2$ content (Tables 1 & 2). This suggests that these rocks encountered little to no crustal contamination during their ascent (Kramer et al. 2005). The broad similarity in immobile incompatible element behaviour for all samples also suggests negligible crustal contamination en route through the crust (Kramer et al. 2005).

The studied samples do not represent primary melts (i.e. low Mg#, Ni and Cr concentrations). These characteristics, shown on REE and trace element diagrams, suggest that the magma underwent a degree of fractional crystallization in magma chambers prior to extrusion at the surface.

Hart & Davis (1978) reported that the Cr/Ni ratios of arc basalts are approximately 2.0, and their concentrations at 11.0% MgO (primitive arc basalt) are 640 and 320 ppm, respectively. Olivine and clinopyroxene have the highest partition coefficient for Ni and Cr among silicates. Fractionation of these minerals must result in a drastic depletion in a residual magma. The effect of continuous fractionation of olivine and clinopyroxene has been calculated to explain the main trend for Cr and Ni in the studied samples. The range of Cr and Ni concentrations in the studied samples can be explained by separation of 12–25% olivine and 4–10% clinopyroxene (Figure 7).

Table 2. Sr-Nd isotopic analyses for Jurassic volcanic rocks of the eastern Pontides.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Rb (ppm)</th>
<th>Sr (ppm)</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>$^{87}\text{Rb}/^{86}\text{Sr}$</th>
<th>$^{147}\text{Sm}/^{144}\text{Nd}$</th>
<th>$^{143}\text{Nd}/^{144}\text{Nd}$</th>
<th>$^{87}\text{Sr}/^{86}\text{Sr}$</th>
<th>εNd</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>22.11</td>
<td>612.2</td>
<td>8.370</td>
<td>42.24</td>
<td>0.1039</td>
<td>0.705256(11)</td>
<td>0.1200</td>
<td>0.512586(12)</td>
<td>0.705004</td>
</tr>
<tr>
<td>TL14</td>
<td>7.335</td>
<td>317.0</td>
<td>2.956</td>
<td>11.54</td>
<td>0.0665</td>
<td>0.705172(13)</td>
<td>0.1551</td>
<td>0.512669(12)</td>
<td>0.705006</td>
</tr>
<tr>
<td>I22*</td>
<td>23.46</td>
<td>564.8</td>
<td>5.124</td>
<td>25.23</td>
<td>0.1197</td>
<td>0.704868(11)</td>
<td>0.1220</td>
<td>0.512621(13)</td>
<td>0.704570</td>
</tr>
<tr>
<td>U29</td>
<td>18.48</td>
<td>525.4</td>
<td>3.873</td>
<td>17.03</td>
<td>0.1011</td>
<td>0.705702(11)</td>
<td>0.1345</td>
<td>0.512330(21)</td>
<td>0.705450</td>
</tr>
<tr>
<td>ZL5*</td>
<td>20.08</td>
<td>391.9</td>
<td>6.408</td>
<td>31.22</td>
<td>0.1480</td>
<td>0.705601(12)</td>
<td>0.1242</td>
<td>0.512721(13)</td>
<td>0.705232</td>
</tr>
<tr>
<td>BCR-1</td>
<td>46.69</td>
<td>330.5</td>
<td>6.671</td>
<td>28.65</td>
<td>0.4081</td>
<td>0.705003(11)</td>
<td>0.1410</td>
<td>0.512624(19)</td>
<td>0.705232</td>
</tr>
</tbody>
</table>

Uncertainties (in brackets) are ±2– within run precision and refer to the last digits.

εNd calculated using chondritic reference (CHUR) with present parameters $^{143}\text{Nd}/^{144}\text{Nd}$= 0.512638 and $^{147}\text{Sm}/^{144}\text{Nd}$=0.1967

Figure 6. $\varepsilon\text{Nd}(210 \text{ Ma})$ vs $^{87}\text{Sr}/^{86}\text{Sr}(210 \text{ Ma})$ diagram for samples from the Jurassic rocks of the eastern Pontides. Mantle Array according to DePaolo & Wasserburg (1979); BSE-Bulk Silika Earth.
These lavas lack distinct Eu anomalies (except for the porphyric andesites the average Eu/Eu* ratio is 0.94) suggesting very little, if any, fractionation of plagioclase. Because Si, Ca and Na concentrations have probably changed during alteration, a check of plagioclase fractionation using major elements is impossible. However, fractionations of large amounts of calcic plagioclase must also result in a significant decrease in the Al abundance of the residual melts. Some samples have higher Al2O3 contents, indicating that plagioclase fractionation must play a subordinate role, if at all.

In summary, it is concluded that the moderate separation of olivine and clinopyroxene can explain the observed range of Cr and Ni concentrations. The role of plagioclase has been of minor importance.

Degree of Partial Melting

In general, low La/Yb ratios reflect a melting regime dominated by relatively large melt fractions and/or spinel as the predominant residual phase, whereas high La/Yb ratios are indicative of smaller melt fractions and/or garnet control. Therefore, relatively low (La/Yb)N and (Gd/Yb)N ratios, combined with relatively moderate HREE abundance, in these volcanic rocks suggests that they may have formed by low degrees of partial melting of a spinel-bearing source. The relatively low P2O5/Al2O3 ratios (0.006–0.033) for these rocks also indicate a relatively low percentage of melting. However, the ratios of incompatible elements with similar distribution coefficients (e.g., Th/Nb, Zr/Nb, Nb/La), which are the least susceptible to partial melting and fractional crystallization processes, show regular variation, as illustrated in Table 1. Such variations in incompatible element ratios and isotopic compositions potentially suggest that they were generated by variable degrees of partial melting of the same homogeneous source (Pearce 1983).

Tectonic Setting

As discussed previously, the tectonic setting of the Jurassic volcanic rocks of the eastern Pontides is still debated, with two distinct models proposed. One suggests rift-related volcanism (e.g., Şengör & Yilmaz 1981; Görür et al. 1983; Bergougnan 1987), and the other argues for subduction related volcanism (e.g., Kazmin et al. 1986; Golonka 2004).

Trace element (negative Nb-Ta, Ti, Zr anomalies in Figure 4) and isotope data (depleted εNd values in Figure 6) appear to support a subduction-related cause of the volcanism, rather than rifting.

Combined use of Sr and Nd isotope ratios can be a particularly powerful geochemical tool. Figure 6 shows the Sr and Nd isotopic characteristics of major terrestrial reservoirs and the studied samples. Most of the mantle has εNd higher than, and 87Sr/86Sr lower than bulk silica earth (BSE). MORB and most island arc basalts tend to have low 87Sr/86Sr and high εNd values. 87Sr/86Sr (t) and εNd (t) values of the studied samples plot in the εNd depleted and 87Sr/86Sr enriched sector of the diagram. As discussed above, sea water alteration may cause the Sr enrichment in the rocks. Nevertheless, the isotopic characteristics of the studied samples are comparable with those of island arc volcanic rocks (Kramer et al. 2005).

Bailey (1981) recognized four types of andesite settings: oceanic island arcs that are divided into low-K and 'other' andesites, continental island arcs, thin continental margins and thick continental margins.
(Andean). All these andesites could be discriminated using a La/Yb vs Sc/Ni plot and by high contents of Al, low contents of Ti, Zr, REE, Y, Nb, Ta and Ga, and the absence of pronounced negative Eu anomalies. Using Bailey’s (1981) trace element criteria, the tectonic setting of these Jurassic volcanic rocks were tested on La/Yb-Sc/Ni diagram (Figure 8). La/Yb ratios in volcanic rocks are good indicators of the mantle source. On the other hand, increasing Sc/Ni ratios can be caused by increased crustal contamination of the magmas. Most of the samples fall within a narrow Sc/Ni range (≥ 1) and plot in the continental arc field. The same tectonic setting can be proposed using the Th/Yb-Ta/Yb discrimination diagram (Figure 9). According to the original boundaries proposed by Pearce (1983), Jurassic volcanic rocks from the Eastern Pontides belong to an active continental margin.

Conclusions
All these investigations indicate that the Jurassic volcanic rocks of the northern zone of the Eastern Pontides represent a suite of active continental arc lavas, ranging from highly depleted basalt to dacite. The homogeneous isotopic geochemistry of these lavas, with slightly enriched initial Sr ratios (~ 0.7052) and depleted εNd values (-0.7 to 3.2) is typical of modern subduction-related magmas. Based on geochemical data (both trace element and isotopic signatures), an arc setting is therefore proposed for the Jurassic volcanic rocks from the centre of the northern zone of the eastern Pontides. However, evidence of a transtensional tectonic regime in the Pontides is shown by many researchers (Şengör & Yılmaz 1981; Görür et al. 1983; Bergougnan 1987; Yılmaz et al. 1996; Kocyigit & Altiner 2002; Yılmaz 2006; Yılmaz & Kandemir 2006), and it is thought that this transtensional tectonic regime split the arc as an inter-arc rift. Kandemir (2004), Şen et al. (in prep) and this study propose a model in which south-facing half-grabens formed in the continental arc. The investigated volcanic rocks were located at the north end of the half graben and pyroclastic rocks were dominant in the north, while epiclastic rocks were dominant in the south (Figure 10).

Acknowledgements
The author would like to thank Ercan Aldanmaz for his thorough, critical and constructive reviews and
comments, and E. Bozkurt for his helpful editorial advice. I also thank C. Yılmaz (KTÜ) and İ. Kurt (MTA, Trabzon) for their critical and constructive comments. Thanks are also due to O. Karslı, F. Aydın and R. Kandemir for their help during field work. Financial support for this study was jointly provided by TÜBİTAK (YDABAG 103Y017) and Research Fund of Karadeniz Technical University (2003.112.005.5) grants. John A. Winchester helped with the English of the final text.

References

JURASSIC VOLCANISM IN THE EASTERN PONTIDES

Received 04 September 2006; revised typescript received 21 February 2007; accepted 28 March 2007