Palynomorph, Foraminifera, and Calcareous Nannoplankton Biostratigraphy of Oligo–Miocene Sediments in the Muş Basin, Eastern Anatolia, Turkey

RECEP HAYRETTİN SANCAY, ZÜHTÜ BATI, UĞRAŞ İŞIK, SABRİ KİRICİ & NIHAL AK'A
Turkish Petroleum Corporation (TPAO), Research Center, Söğütözü, TR–06100 Ankara, Turkey
(E-mail: hsancay@petrol.tpa.gov.tr)

Abstract: Oligo–Miocene sediments have not been adequately studied biostratigraphically, and a detailed biochronostratigraphic framework has not yet been established in Eastern Anatolian basins. Palynomorphs have therefore been correlated with the biozonations of marine dinoflagellates, planktonic foraminifera and calcareous nannoplankton of similar latitudes in combined samples from the Ebulbahar and Kelereßdere measured stratigraphic sections, which are located in the northeastern part of Muş. Palynological (dinoflagellate), foraminiferal micropalaeontological, and nannopalaeontological events, correlatable with worldwide defined biozonations, have been documented from uppermost Rupelian to Upper Miocene–Pliocene sediments. First occurrences (FOs) and last occurrences (LOs) of selected dinoflagellates are important in establishing the biostratigraphic framework. The LO of Wetzeliella gochtii in the latest Rupelian, the LO of Deflandrea phosphoritica in the latest Chattian, peak occurrences of Chiropteridium spp. in the early Aquitanian, the FO of Hystrichosphaeropsis obscura, followed by the FO of Membranilarnacea? picena in the late Aquitanian are of particular significance for regional correlations. Based on established marine zonations and the presence of characteristic Oligocene taxa such as Slowakipollenites hipophæoides and Mediocolopollis compactus, stratigraphic ranges of relatively less known pollen taxa in the region, especially those of Compositae (tubuliflorae-type), Umbelliferae, Gramineae, considered to have their first occurrences at the beginning of Neogene in earlier studies, have been calibrated. In the light of this study, the Late Oligocene–Early Miocene zonation of some palynomorphs should be emended and the stratigraphic ranges of the Compositae (tubuliflorae-type), Umbelliferae, Gramineae pollen should be extended into the Chattian and even the Rupelian in this region. As far as depositional conditions are concerned, palynomorph and organic facies properties indicate deposition under brackish water, shallow (restricted) and relatively deeper marine conditions related to fluctuating sea level during the Oligocene and Early Miocene. Shallowing-upwards deposition during the Late Oligocene was followed by restricted marine and brackish conditions at the Oligocene–Miocene boundary and in the early Aquitanian. Relatively deeper conditions in the late Aquitanian continued as extensive reef accumulations due to shallowing in the early Burdigalian. Finally, after the last deepening event at the end of Burdigalian and ?early Langian, completely terrestrial (lactustrine and fluvial) deposition predominated in the Muş Basin due to withdrawal of the sea. Terrestrial palynomorphs reflect temperate to subtropical climates in which mean annual temperatures vary between 15.6 and 21.3 °C, and mean temperatures of the coldest month (CMT) were between 5.0 and 13.3 °C.

Key Words: Oligocene, Miocene, Eastern Anatolia, palynomorphs, planktonic foraminifera, benthic foraminifera, nannoplankton, palaeoenvironment, palaeoclimate

Oligo–Miyosen Sedimanlarının Palinomorfb, Foraminifer ve Nannoplankton Biyostratigrafisi, Muş Havzası, Doğu Anadolu, Türkiye

Introduction

Oligo–Miocene sediments in Eastern Anatolia have not yet been studied adequately palaeontologically and a biostratigraphic framework has not yet been properly established. Palynomorphs have been correlated with biozonations of foraminifera and calcareous nannoplankton in samples from the Ebulbahar and Kelereßdere measured stratigraphic sections in Muß. The aim of this study is to document the distribution of dinoflagellates and identify dinoflagellate events in Oligo–Miocene sediments. Calibration of stratigraphically important dinoflagellate events is achieved by use of planktonic foraminifers. The Muß Basin was chosen for this study because the Oligo–Miocene transition is marine in character in the southern part of the basin and these sediments were expected to be productive for all three fossil groups. Depending on the lithology, palynological, nannopalaeontological, and foraminiferal micropalaeontological analyses have been carried out and bio-stratigraphic zones are discussed.

As a pioneering study, the main purpose of this paper is to document the principles of biostratigraphy of Oligo–Miocene sediments in Eastern Anatolia and to establish a biostratigraphic framework for future studies. As it was indicated by Berger (1992), the disadvantages and advantages of different fossil groups (planktonic foraminifera, palynomorphs and calcareous nannoplankton) should always be kept in mind when establishing biozonations. He summarized the strong and weak aspects of these three disciplines as follows: all three may obtain high resolution biostratigraphical data which may be in the range of 0.5–4.0 Ma for calcareous nannoplankton, planktonic foraminifers and marine palynomorphs (dinoflagellates), whereas it is 1.5–4.0 Ma for terrestrial palynomorphs. Biozonations of calcareous nannoplankton and planktonic foraminifers are well established but are found only in marine sediments; whilst terrestrial palynomorphs can be found in both marine and terrestrial successions. Moreover, calcareous nannoplankton and planktonic foraminifers are very rare in shallow marine conditions. Nannoplanktons are very useful biostratigraphic markers but they can easily be reworked, and according to Berger (1992), reworking is the major problem of correlation studies based on calcareous nannoplankton biozonations. On the other hand, the major problem of the palynomorph-based correlation studies is the preservation (oxidation and mechanical destruction). Berger (1992) emphasized that there is also a possibility for terrestrial palynomorphs to reflect climatic changes rather than biostratigraphically meaningful evolutionary trends.

Regional Stratigraphic Framework

The Eastern Anatolian subbasins are bordered by the Pontides to the north, the Southeast Anatolian Suture Zone to the south, the Karlova Triple Junction of the North Anatolian and South Anatolian faults to the west (Allen 1969; Arpat & Şaroğlu 1972; Şengör 1979), and Georgia, Armenia and Iran to the east (Figure 1). Eastern Anatolia occupies the northwestern part of the Turkey-Iran Plateau (Şengör & Kidd 1979).

This study was carried out in the Muß Basin located in the northern part of the Bitlis Metamorphics and the
Figure 1. Location map of the Eastern Anatolia subbasins, Ebulbahar and Kelereşdere measured stratigraphic sections. (K—Karlıova, KM—Kahramanmaraş; DSFZ—Dead Sea Fault Zone, NAFZ—North Anatolian Fault Zone, NEAFZ—Northeast Anatolian Fault Zone (modified from Bozkurt 2001; Şahintürk et al. 1998).
eastern part of the North Anatolian Fault Zone. The Muş Basin is Mesozoic—Cenozoic in age, intermontane in nature and formed under the influence of the North Anatolian Fault Zone (Şengör 1980; Şengör & Yılmaz 1981; Şaroğlu & Yılmaz 1987).

Şaroğlu & Güner (1981) and Şaroğlu (1985) have identified four depositional/tectonic phases in the Eastern Anatolian basins (Figure 2).

The first and oldest phase is Palaeozoic in age and represented by metamorphics such as gneiss, micaschist, granite, marble, crystalline limestone, and meta-volcanics, although Savcı et al. (1979) and Perinçek (1980) argued that the younger parts of the metamorphics could be of Early Mesozoic age. The second phase is represented by an Upper Cretaceous ophiolithic mélangé, consisting of sandstone, tuff, limestone blocks, basic and ultrabasic rocks, that tectonically overlies the metamorphics. Şengör (1980) and Şengör et al. (1980) interpreted this unit as a product of the northern branch of the Neotethys and according to Şengör (1980), these two phases correspond to an East Anatolian Accretionary Complex.

<table>
<thead>
<tr>
<th>CHRONO-STRATIGRAPHY</th>
<th>LITHOLOGY</th>
<th>EXPLANATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER MIocene-QUATERNARY</td>
<td>†††††</td>
<td>volcano-sedimentary rock, sandstone, mudstone, marl, clayey limestone, agglomerate, basalt, tuff, andesite</td>
</tr>
<tr>
<td>†††††</td>
<td>angular unconformity</td>
<td></td>
</tr>
<tr>
<td>PALAEOCENE (?)-EOCENE-UPPER MIocene</td>
<td>††††</td>
<td>conglomerate and flysch at the bottom, sandstone, mudstone, and clayey limestone towards the upper levels</td>
</tr>
<tr>
<td>†††</td>
<td>nonconformity</td>
<td></td>
</tr>
<tr>
<td>UPPER CRETACEOUS</td>
<td>††††</td>
<td>ophiolitic mélangé: blocks of serpentine and limestone</td>
</tr>
<tr>
<td>PALAEOZOIC-LOWER MESOZOIC</td>
<td>†††††</td>
<td>tectonic contact</td>
</tr>
</tbody>
</table>

Metamorphic rocks: gneisses, marble, micaschists, metavolcanics, granite

Figure 2. Columnar section illustrating depositional/tectonic stages in the Eastern Anatolian basins (Şaroğlu 1985).
created by the elongation of Anatolids and Taurids. The third phase is characterized by Palaeocene(?)–Eocene to Lower Miocene sedimentary rocks consisting of limestone, argillaceous limestone, sandstone, and siltstone. These sediments are shallowing-upward in character and unconformably overlie older units belonging to the first and second phases. A compressive regime was active in this phase, related to the collision of the Arabian and Laurasian plates (Yılmaz 1993). Sediments of the third phase began with relatively deeper marine Eocene sediments of limited extent followed by shallower marine Oligocene sediments and ending up with the shallow marine to reefal Lower Miocene sediments of wider extent. The last and youngest phase consists of terrestrial sediments (sandstone, claystone, siltstone, and marl), volcanics (basalt, andesite, rhyolite, dacite, tuff and agglomerate) which originated from N–S-trending tensional fractures (Şaroglu et al. 1980) and associated tectonic events from Late Miocene to Recent. Sediments deposited during the fourth phase overlie unconformably those of the third phase. Eastern Anatolia was affected by an intense tectonic regime at the beginning of the Late Miocene (neotectonic period of Şengör 1980). Figure 3 illustrates the generalized stratigraphic section of the Muş Basin (Şahintürk & Erdem 2002, modified after Soytürk 1973). The Sakalutian Ophiolitic Complex and metamorphics constitute the basement and are unconformably overlain by limestones with Rudist bivalves known as the Kapıkaya Formation, Maastrichtian in age and the oldest rocks outcropping in the area. The Kapıkaya Formation is unconformably overlain by the Palaeocene Merttepe Formation, which includes mostly limestone, shale, marl and sandstone. The Sevik and Merttepe formations are conformably overlain by clayey limestone, shale and sandstones of the Lower–Middle Eocene Kösehasan Formation. The Ahlat Formation of Late Eocene age, unconformably overlies the Kösehasan Formation and the the Ahlat Formation is characterized by terrestrial, reddish sandstone, siltstone and conglomerate at the base and marine, clayey limestone, silty marl and sandstone at the top. The Ahlat Formation is unconformably overlain by sandstone–marl intercalations of Late Oligocene–Early Miocene age with limestone interbeds, known as the Keleres (Yazla Formation of Akay et al. 1989) Formation, shallow marine unit measured as 3250 m thick in the Keleresdere valley but 4250 m in the Ebulbahar valley. Towards the northern part of the Muş Basin, the Keleres Formation passes into more transitional and terrestrial deposits characterized by deltaic sandstones, clayey limestones, siltstones, laminated shales and coal interbeds known as the Kümürlü and Penek formations. The Lower–Middle Miocene Aşkale Formation, represented by limestone, shale, marl, sandstone, gypsum, conformably overlies the Keleres Formation. The Adicevaz Member of the Aşkale Formation is characterized by reefal limestones of Burdigalian age (Demirtaşlı & Pisoni 1965), and the Aşkale Formation is unconformably overlain by sedimentary and volcano-sedimentary rocks belonging to the Upper Miocene–Pliocene Zırnak Formation. Volcanic rocks known as the Karakurt-Solhan Volcanics have occasionally been seen laterally and vertically transitional to the Zırnak Formation, the dominant lithologies of which are sandstone, mudstone, marl and evaporites. The Bulanik and Elmakaya formations, of Pliocene age, unconformably overlie the Zırnak Formation and are mostly dominated by sandstone, mudstone and marl. Basalt, tuff and agglomerate related to the Nemrut volcanics either rest unconformably upon the Bulanik and Elmakaya formations, or are horizontally transitional to them.

Material and Methods

A very thick succession of Oligocene–Miocene sediments crops out near Keleres village, Muş (Figure 1). The Ebulbahar and Keleresdere sections, located in the northeastern part of Muş, have been measured and sampled for biostratigraphic analyses. The Ebulbahar section begins at coordinates N 01150, E 35950 in the K47-a3 quadrangle of the topographic map of Turkey, and ends at coordinates N 12650, E 45950 in the K47-b1 (Figure 4); and the Keleresdere section begins at coordinates N94000, E37000 in the K47-c1, and ends at coordinates N 00000, E 51000 in the K47-b3 (Figure 5). Since the whole Keleres Formation reflects shallow marine depositional conditions in the study area, palynology, foraminiferal micropalaeontology and nannopalaeontology have all calibrated throughout the sections and with good fossil recoveries. The Ebulbahar and Keleresdere measured stratigraphic sections are composed mainly of clastic lithologies (shale, marl, silty marl, sandstone, siltstone, claystone, and conglomerate) interfingering with limestones. Palynological and nannopalaeontological slides and washed samples for foraminiferal micropalaeontological analyses have been prepared for siliciclastic lithologies, whereas limestones
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SERIES</th>
<th>LITHOSTRATIGRAPHY</th>
<th>THICKNESS (m)</th>
<th>LITHOLOGY</th>
<th>EXPLANATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
were studied only in thin sections. Depending on the lithology, related disciplines were employed to the same samples, and the different biozonations have been correlated on a bio-chronostratigraphic chart.

Relative abundances of the fossils were calculated semiquantitatively and the following terms used: super abundant (S): more than 100 specimens, abundant (A): 20 to 100 specimens, common (C): 6 to 20 specimens, rare (R): 2 to 6 specimens, present (P): only 1 specimen.

Palaeoclimatologic reconstructions were made using CLIMSAT software (see also Mosbrugger & Utescher 1997 for detailed explanations).

Digital images of the palynomorphs, nannoplanktons, and foraminifers have been taken using a Leica DC200 digital camera system. Fossil distribution charts (biostratigraphic correlation diagram) and the lithostratigraphic log were drawn by using StrataBugs and Corel Draw softwares, respectively.

165 samples were collected from the outcrops (Figures 4 & 5) but only 118 of them were productive and used in biostratigraphical analyses. All analysed materials are stored in the Palynology Laboratory Archive of the Turkish Petroleum Corporation (TPAO) Research Center, Ankara. Distribution of the productive samples is as follows in Table 1.
Depending on the lithology, palynological, nannopalaeontological and foraminiferal micropalaeontological analyses were carried out. Palynomorphs were correlated with biozonations of marine dinoflagellates, planktonic foraminifera and calcareous nannoplanktons from similar latitudes in combined samples from the Ebulbahar and Kelereßdere measured stratigraphic sections in the field. Relative abundances of fossils have been calculated semiquantitatively ranging from present (only one specimen) to super abundant (more than 100 specimens).

Dinoflagellate and Acritarch Events (FO: First Occurrence, LO: Last Occurrence)

EO1. *Distatodinium biffii* Interval Zone

Assigned Age: latest Rupelian

Equivalent Planktonic Foraminiferal Zone: P21a

Equivalent Nannoplankton Zone: lower part of NP24
Samples: 66–72 in the Ebulbahar section and 92–95 in the Kelereşdere section

Definition: Interval between the LO of Ascostomycystis potane and the LO of Wetzeliella gochtii. The eponymous species, Distatodinium biffii, ranges above and below the zone. The LO of Ascostomycystis potane also coincides with the FO of Globorotalia opima. Deflandrea phosphoritica occurs commonly, and Compositae (tubuliflorae-type) also exist within this zone. The upper part of the zone could not be defined properly in the Kelereşdere section because of the unsuitable lithology (reefal limestone) in samples 93–95.

Discussion: Torricelli & Biffi (2001) reported that the FO and LO of Wetzeliella gochtii were in the Early Oligocene from Numidian Flysch in the Oued El Guastal and El Gassaa sections, Tunisia. They suggested that the LO of this taxon can be used as an additional criterion for the identification of the Clo Zone (Early Oligocene) of Wilpshaar et al. (1996) in the Mediterranean region. As reported by Pross (2001), the LO of Wetzeliella gochtii is a diachronous event that varies from Rupelian to early Chattian. On the other hand, according to Stover & Hardenbol (1994), the FO of Ascostomycystis potane is very close to the base of the Rupelian and last occurrence is in the middle Rupelian; in calcareous nannoplankton zone NP23 of Martini (1971), and it never occurs in the late Rupelian. We have not seen any Ascostomycystis potane in EO1, but Batý and Sancay (2007) observed that this early–middle Rupelian taxon occurs just below the zone and corresponds to the middle/late Rupelian boundary. Reefal limestones (samples 93–95 in the Kelereşdere section) should therefore represent the ?late Rupelian.

LO1. Deflandrea phosphoritica Abundance Zone

Assigned Age: Chattian

Equivalent Planktonic Foraminiferal Zones: P21b and P22

Equivalent Nannoplankton Zones: upper part of NP24 and NP25

Samples: 73–78 in the Ebulbahar section and 96–106 in the Kelereşdere section

Definition: The base of the zone is defined by the LO of Wetzeliella gochtii and its top by the LO of Deflandrea phosphoritica. The base of the zone is not clear because of the unsuitable lithology (reefal limestone) and is still under investigation (Batý & Sancay 2007). Distatodinium biffii makes its last appearance within the zone.

Discussion: The zone may correspond to the lower part of DO3, Late Oligocene, (top of the youngest acme of Deflandrea spp.) of Biffi & Manum (1988), the Distatodinium biffii (Dbi) Interval Zone of Brinkhuis et al. (1992) representing Late Oligocene–Early Miocene, and the Distatodinium biffii (Dbi) Interval Zone of Zevenboom (1996) indicating Late Oligocene. The two latter studies suggest that the FO of Distatodinium biffii defines the base of the zone whereas the base of the youngest acme of Deflandrea spp. can be used as a confirmatory event for the top.

EM1. Transitional

Assigned Age: early Aquitanian

Equivalent Planktonic Foraminiferal Zones: ?P22 to M1

Equivalent Nannoplankton Zones: ?NP-25 to NN1

Samples: 79–90 in the Ebulbahar section and 107–114 (partly covered) in the Kelereşdere section.

Definition: This transitional subzone is characterized by only a few occurrences of dinoflagellates such as Homotryblium sp. and Spiniferites sp., and the terrestrial freshwater alga Botryococcus braunii.

Discussion: Brinkhuis et al. (1992) reported distinct increases in terrestrial palynomorphs, especially Chiropteridium spp. towards the Oligocene–Miocene boundary, and claimed that the sudden increase in shallow-water indicators associated with an increasing amount of reworking might be related to the relative fall in sea level. This regressive event was also reported by Haq et al. (1988), indicating that the Oligocene–Miocene transition coincides with the base of their cycle TB1.4 and corresponds to Chron C6Cr3 at about 25 Ma. Moreover, several stable isotope studies (Miller et al. 1985, 1987; Biolozi 1983) suggest a global cooling event and confirm the global nature of the relative fall in sea level at the Oligocene–Miocene boundary.

Köthe (1990) studied the Palaeogene dinocysts of northwest Germany. She reported an assemblage which can be compared with D15 of Costa & Manum (1988) and is characterized by the common occurrences of Homotryblium plectilum, Membranophoridium aspinatum (especially common in the lower part, but rare in the upper part), rare occurrences of Chiropteridium and the
absence of *Deflandrea phosphoritica*, which was interpreted as indicating a Late Oligocene age corresponding to Nannoplankton Zone NP25. This assemblage may be compared with sequences A and B, latest Chattian and/or early Aquitanian in age, of Dybkjaer (2004). Similar dinoflagellates have also been identified in the transitional zone (EM1) in Eastern Anatolia and interpreted as Early Miocene in age.

EM2. Chiropteridium spp. Abundance Zone I

Assigned Age: early-middle Aquitanian
Equivalent Planktonic Foraminiferal Zone: M1
Equivalent Nannoplankton Zones: NN1 and NN2
Samples: 91-92 in the Ebulbahar section and 115–119 (partly covered) in the Kelereşdere section.

Definition: This zone is represented by the peak occurrences (including the first common occurrence) of *Chiropteridium galea* and *Chiropteridium lobospinosum*.

Discussion: The zone may be compared with DN1 (upper Chattian to lower Aquitanian) of de Verteuil & Norris (1996) in which a *Chiropteridium-Homotryblium-Systematophora* assemblage and the LOs of *Chiropteridium* and *Deflandrea phosphoritica* are reported. It also corresponds to the *Chiropteridium* (Chi) Abundance Subzone (uppermost Oligocene-lowermost Miocene) of Brinkhuis et al. (1992), to the top P22 through N4 planktonic foraminiferal zone, and to the basal NP25 through NN1 calcareous nannoplankton zones.

EM3. Hystrichosphaeropsis obscura Interval Zone

Assigned Age: middle-late Aquitanian
Equivalent Planktonic Foraminiferal Zones: M1 to ?M2
Equivalent Nannoplankton Zones: NN1 and NN2
Samples: 93–94 in the Ebulbahar section, but the interval is covered in the Kelereşdere section.

Definition: Base of the zone is defined by the FO of *Hystrichosphaeropsis obscura* and the last common occurrence of *Homotryblium vallum*. *Chiropteridium galea*, *Heteraulacacysta* sp., *Cribroperidinium tenuitabulatum*, and *Apteodinium spiridoides* occur commonly within this zone which also contains the LO of *Cordosphaeridium cantharellus*. The top of the zone is not well defined because of the unsuitable overlying lithology (limestone).

Discussion: This zone may be comparable with DN2 (lower Lower Miocene to middle Lower Miocene) of de Verteuil & Norris (1996). It corresponds in part to the *Ectosphaeropsis burdigaliensis* Interval Zone (Lower Miocene) of Brinkhuis et al. (1992), defined as an interval between the base of the youngest acme of *Deflandrea* spp., to the FO of *Membranilarnacia? Picena*; corresponds to the basal N4 through N5 planktonic foraminiferal zones and the basal NN1 through NN2 calcareous nannoplankton zones.

Sequence C of Dybkjaer (2004) may be compared with Lower Miocene sediments of the Ebulbahar section. Dybkjaer (2004) indicated that the abrupt disappearance of *Chripteredium galea*, *Glaphyrocysta*-group, and *Deflandrea phosphoritica* and low diversity *Homotryblium*-dominated assemblage have been replaced by a high diversity assemblage dominated by *Impletosphaeridium insolitum*, *Oureculodinium centrocarpum*, *Spiniferites* spp., and *Cleistosphaeridium placacantha* co-existing *Apteodinium* spp., *Hystrichokolpoma rigaudiae*, *Lingulodinium maeracerophorum* and rare *Homotryblium* spp.

The upper four samples of Heilmann-Clausen & Costa (1989) were also reported as Early Miocene in age, comparable with D16/D17 zones of Costa & Manum (1988) based on the presence of *Hystrichokolpoma poculum* and *Hystrichosphaeropsis obscura* and the absence of high abundances of *Chiropteridium* spp., *Deflandrea* spp., and *Homotryblium* spp. This assemblage, which is dated as middle-late Aquitanian (EM3) in the present study, may be comparable with sequence C, early to middle Burdigalian, of Dybkjaer (2004).

EM4. Chiropteridium spp. Abundance Zone II

Assigned Age: late Aquitanian
Equivalent Planktonic Foraminiferal Zones: M1 to ?M2
Equivalent Nannoplankton Zones: NN1 and NN2
Samples: 110–112 in the Ebulbahar section but could not be detected in the Kelereşdere section due to the unsuitable lithology.

Definition: The last common occurrence of *Chiropteridium* spp. and the first common occurrence of
Homotryblium pusillum fall within this zone. The upper boundary of the zone is not defined palynologically due to the unsuitable lithology (limestone).

Discussion: This zone corresponds in part to the upper portions of the *Ectosphaeropsis burdigaliensis* Interval Zone (Early Miocene) of Brinkhuis et al. (1992) which was defined as extending from the base of the youngest acme of *Deflandrea* spp., to the FO of *Membranilarnacia? picena* and corresponding to the basal N4 through N5 planktonic foraminifer zones and basal NN1 through NN2 calcareous nanoplankton zones.

EM3 and EM4 biozones can be correlated with the third biozone, named the *Hystrichosphaeropsis obscura-Chiropteridium* spp. Assemblage Zone, of Ertuğ et al. (1995) and defined in the Akcan Member of the Alibonca Formation, in the Tekman Basin, Eastern Anatolia. This biozone was based on the FO of *Hystrichosphaeropsis obscura* and the epibole of *Chiropteridium* spp. and common occurrences of *Impletosphaeridium* sp. and *Hystrichokolpoma rigaudiae* were also reported from the unit, according to Ertuğ et al. (1995), is of Early Miocene (Aquitanian–Burdigalian) age supported by the evidence from nanoplankton, which suggest an Early Miocene (NN2 nanoplankton zone).

EM1 through EM4 zones correspond to the *Ectosphaeropsis burdigaliensis* (Ebu) Interval Zone of Brinkhuis et al. (1992), defined as an interval between the base of the youngest acme of *Deflandrea* spp., and the FO of *Membranilarnacia? picena*. They indicated that the zone represents the Early Miocene.

EM5. Membranilarnacia? picena Interval Zone

Assigned Age: latest Aquitanian

Equivalent Planktonic Foraminiferal Zone: M2

Equivalent Nanoplankton Zone: NN2

Sample: 116 in the Ebulbahar section but could not be detected in the Kelereşdere section due to the unsuitable lithology.

Definition: Base of the zone is defined by the FO of *Membranilarnacia? picena* but the top of the unit is not defined due to an overlying unconformity. The LOs of *Chiropteridium* spp. and *Thalassiphora pelagica* also fall within this zone.

Discussion: Corresponds to the *Membranilarnacia? picena* (Mpi) Interval Zone (Early Miocene) of Brinkhuis et al. (1992) and Zevenboom (1996), and the DM1b Subzone of Biffi & Manum (1988). Torricelli & Biffi (2001) also reported that *Membranilarnacia? picena* has its FO in Aquitanian deposits from the Numidian Flysch in El Gassa and Cap Serrat sections in Tunisia.

Due to the unsuitable lithologies (mostly limestone, carbonaceous sandstone with some silty marl intercalations in which palynomorphs occur sporadically) of the uppermost Aquitanian–Burdigalian sediments, some stratigraphically important dinoflagellates such as *Exochosphaeridium insigne*, *Sumatradinium druggii*, *Sumatradinium soucouyantiae* and *Cousteaudinium aubryae* are missing from Eastern Anatolia. Sampling interval may also be another reason for the apparent absence of these taxa because they have short stratigraphic ranges, which could not be correlated regionally on the basis of dinoflagellate events.

EM6. Terrestrial Zone

Assigned Age: Late Miocene to Pliocene

Equivalent Planktonic Foraminiferal Zone: ?

Equivalent Nanoplankton Zone: ?

Sample: 178–184 in the Kelereşdere section but could not be detected in the Ebulbahar section due to the unsuitable lithology.

Definition: Completely terrestrial palynomorphs and freshwater algae dominate this zone, the base of which is not defined satisfactorily properly because of the underlying unconformity. *Compositae* (liguliflorae-type), *Compositae* (tubuliflorae-type; small), *Dipsacaceae*, *Umbelliferae*, *Periporopollenites multiporatus*, *Polyporopollenites undulosus*, *Monoporopollenites gramineoides*, *Botryococcus braunii* and *Ovoidites parvus* occur commonly in the samples.

Terrestrial Palynomorphs

Palynological studies, mostly carried out by TPAO on wells and surface sections in Eastern Anatolia, are based mainly on terrestrial palynomorphs. Because of the absence of multidisciplinary studies in the region, uncertainties in the stratigraphic ranges of many fossils including dinoflagellates, planktonic and benthonic foraminifera, and nanoplankton still exist. Biozonations established especially in western and central Turkey in earlier studies by Benda (1971a, b); Benda et al. (1977, 1979); Ediger et al. (1990); Batı (1996) have been used in Eastern Anatolia with only limited success.
As far as terrestrial palynomorphs are concerned, pollen belonging to the Compositae family seem to be very important in establishing a biostatigraphic framework in Eastern Anatolia. Compositae pollen have not been reported from sediments older than Late Oligocene throughout the world (e.g., Germeraad et al. 1968; Kemp & Harris 1977; Hochuli 1978; Müller 1981). Barrada (1993) studied the Late Oligocene–Miocene pollen of the Golfo San Jorge Basin, Southeastern Argentina and suggested that the lower part of the Chenque Formation could not be older than Late Oligocene based on the occurrence of pollen grains of the Compositae. Batı & Alişan (1991) in their study on the biostatigraphy of Malazgirt-1 well in the Muş Basin, suspected that the first occurrences of Compositae pollen might be in the Late Oligocene of Eastern Anatolia. The stratigraphic distribution of Compositae pollen in Turkey has been studied by several researchers (Benda et al. 1977, 1979; Akgün et al. 1986; Akgün & Akyol 1987, 1992; Ediger et al. 1990; Batı 1996) mostly in Western Anatolian Neogene successions. They mainly suggested that Compositae occurred for the first time at the beginning of the Miocene in western Turkey, but palynostratigraphic analysis indicates that Compositae pollen flourished earlier in Eastern Anatolia (Batı & Alişan 1991) and occurrences of Slowakipollenites hipophæoides and Mediocolpopollis compactus together with common to abundant Compositae pollen (tubuliflorae-type) at the bases of studied sections are stratigraphically important. They are found commonly in zones EO1 and LO1, which are dated as late Rupelian and Chattian, respectively, in this study and are very good indicators of the Oligocene. According to Hochuli (1978), Slowakipollenites hipophæoides occurs in Lower–Middle Oligocene sediments whereas Mediocolpopollis compactus has a much longer stratigraphic range, from Late Eocene to Middle Oligocene in the Central and Western Paratethys. Oligocene occurrences of Slowakipollenites hipophæoides have also been reported by Gorin (1975) in Grande Limagne, France, and by Chateauneuf (1980) in the Paris Basin. These species have also been identified in the Hayrettin and Tokça formations to which Early to Middle Oligocene and Early Oligocene ages have been assigned by Akkırız (2000) and by Akkırız & Akgün (2005) in the Çardak-Tokça Basin, Southwest Anatolia. The earlier flourishing of Compositae pollen (tubuliflorae-type) in Eastern Anatolia have occurred due to changes in climatic conditions. In general, the low abundance of Quercus and the high abundance of Compositae pollen indicates dry to arid conditions (Horowitz 1992). Tropical and subtropical elements such as Tilia, Alnus, Carya etc., recorded in Northwestern and Western Anatolian Tertiary sediments (Bati 1996; Akkırız 2000), do not exist or are very rare in Eastern Anatolia. According to Akgün et al. (2004), mean annual temperatures (MAT) ranged from 17.2 to 20.8 °C and the mean temperatures of the coldest month (CMT) were between 9.6 and 13.3 °C in the Oligocene in Western Anatolia. However, CLIMSAT software results from Oligocene sediments in Eastern Anatolia suggest relatively cooler conditions in which the mean annual temperatures were between 15.6 and 21.3 °C and the mean temperatures of the coldest month (CMT) were between 5.0 and 13.3 °C. Eastern Anatolia was therefore relatively cooler than Western Anatolia during the Tertiary, as it is today.

Tectonism had an important effect on Tertiary deposition in Eastern Anatolia. Because of the collision of the Arabian and Laurasian plates in the Middle Eocene (Yılmaz 1993), Eastern Anatolia was uplifted, converted into positive areas, and eroded after the Late Eocene (Şengör 1980; Şengör & Yılmaz 1981). Erosion from this elevated region into the relatively depressed areas produced terrestrial and/or very shallow marine to transitional lithologies during the Late Oligocene–Early Miocene. This uplifting trend may have been the main reason for relatively cooler climatic conditions and the intense Eocene reworking during the deposition of Oligo–Miocene sediments. Another reason for cooler climatic conditions in Eastern Anatolia may have been intense volcanism. As indicated by Axelrod (1981) and Ediger (1990) large amounts of volcanic dust could have been distributed in the stratosphere and due to the decreasing intensity of solar radiation in the lower atmosphere, relatively lower seasonal mean annual temperatures, colder climatic conditions and less precipitation may have been experienced.

The following palynomorph taxa were identified in samples 66–78 at the Ebulbahar section and 92–106 at the Kelereşdere section; Pollen: Compositae (tubuliflorae-type, less ornamented, thick exine, small and dark coloured), Dicolpopollis kalẹwensis, Monoporopollenites gramineoides, Ephedripites sp., small/less ornamented Umbelliferae, Polyvestibulupollenites verus, Compositae-type pollen, Tricolpopollenites sp., Tricolpopollenites sp., Periporopollenites multiporatus; Spores: Cingulatisporites sp., Retrilites fragilis, Lusatissporites
perinatus, Echinatisporis sp. (reworked from Eocene), Cicatricosisporites sp.; Fungal spores: Anatolinites dongyingensis, Biporisporites sp. All in situ palynomorphs except Compositae, Umbelliferae and Monoporopollenites gramineoides have long stratigraphic ranges (Tertiary). Monoporopollenites gramineoides and small/less ornamented Umbelliferae can be traced back to the Upper Oligocene (Bati 1996 and references therein), but Compositae (tubuliflorae-type) and large/well ornamented Umbelliferae pollen were believed to be present at the beginning of the Miocene (Benda 1971a; Benda et al. 1977, 1979; Ediger et al. 1990; Akgün & Akyol 1992; Akgün et al. 1995; Bati 1996). However, both calcareous nannofossils and foraminifers suggest a Late Oligocene age for these samples. Oligocene zonation of some palynomorphs should be modified, and the stratigraphic ranges of Compositae (tubuliflorae-type) pollen extended into the Chattian and even the Rupelian in Eastern Anatolia. Recent work at the lowermost parts of the studied sections, where very thick clastic successions were deposited, is still continuing (Bati & Sancay 2007) and where the lowest occurrence of Compositae (tubuliflorae-type) was put in the Rupelian on the basis of worldwide dinoflagellate and acritarch biozonations. When the Lower Miocene part of the sections (samples 79–121 in the Ebulbahar section and 109–118 in the Kelereşdere section) are considered, the palynomorph assemblage is composed mostly of the following; Pollen: Compositae (tubuliflorae-type, well ornamented, large, light-coloured) (common to abundant), Monoporopollenites gramineoides (common), large/well ornamented Umbelliferae (common), Dipsacaceae (common), suggesting an Early Miocene age. Relative abundances of Compositae pollen in this interval are much higher compared with Western Anatolia, where average frequencies are around 1 % (Akgün et al. 1986; Akgün & Akyol 1987, 1992).

Samples above the unconformity surface labeled as 178–184 in the Kelereşdere section, contain the following palynomorph assemblage; Compositae (liguliflorae-type) (common), Compositae (tubuliflorae-type; small) (common), Monoporopollenites gramineoides (rare), large/well-ornamented Umbelliferae (rare), which suggests a Late Miocene–Pliocene age. This zone is not recorded in the Ebulbahar section due to the unsuitability of the lithology for palynological analysis.

Foraminiferal Events (Calibrated With the Zonation of Berggren et al. 1995)

EL01. Late Rupelian–early Chattian (samples 66–74 in the Ebulbahar section and 92–99 in the Kelereşdere Section) Paragloborotalia opima opima Range Zone defined by the complete range of the nominal taxon and corresponding to P21.

LO1. Late Oligocene (samples 75–78 in the Ebulbahar section and 100–106 in the Kelereşdere section) Assemblage Zone is distinguished by the absence of Globorotalia ciperoensis ciperoensis, Globigerina venezuelana, Catapsydrax dissimilis, Globigerina praebulloides, Operculina sp., and Globigerina spp. It corresponds to the P21b (Globigerina angulisuturalis/Paragloborotalia opima opima interval subzone defined by the biostratigraphic interval between the LO of Chiloguembelina cubensis and the LO of Paragloborotalia opima opima (early Chattian), 28.5–27.1 Ma) to P22 (Globigerina ciperoensis Partial Range Zone defined by the partial range of Globigerina ciperoensis between the LO of Paragloborotalia opima opima and the FO of Globorotalia kugleri (Chattian), 27.1–23.8 Ma). Reworked taxa from the Eocene such as Nummulites sp., and Epiannularis sp. are also recorded in this zone.

Discussion: The Kelereşdere section (close to Kelereş village) was also measured and analyzed by Sirel (2003) and shallow water, large benthic foraminifer taxa recorded. Sirel suggested that SB 21, 22 zones (Rupelian–early Chattian) were represented by the interval from the first occurrence of Austrotrillina striata to the last occurrence of Nummulites fichteli and Nummulites vascus. On the other hand the SB 23 zone (late Chattian), was represented by the assemblage of Miogyspsinoides complanatus, Euilepidina, Nephrolepidina and Spinoclypeus. Nummulites fichteli and Nummulites vascus together with Globorotalia opima opima, were been identified in the Muş-2 well, located at the northwestern part of the studied sections drilled by TPAO (Sancay et al. 2003). These intervals may correspond to SB 21, 22 zones of Sirel (2003) and may be represented by reefal limestones interpreted as ?late Rupelian in the Kelereşdere section.
EM1. Early Aquitanian (samples 79-90 in the Ebulbahar section and 107—114 in the Kelereßdere section) Transitional Zone is defined by the presence of Globigerinoides primordius, a few benthonic foraminifera which have a wide stratigraphic range and intensively reworked Oligocene planktonic foraminifera (including Paragloborotalia opima opima). This zone is believed to correspond to Subzone M1a (Globigerinoides primordius interval subzone) defined by the biostatigraphic interval within the range of Globigerinoides primordius between the FO of Globorotalia kugleri and the FO of Globoquadrina dehiscens (Aquitanian), 23.8—23.2 Ma).

Discussion: The stratigraphic distribution of Globigerinoides primordius is problematic. Although found together with Paragloborotalia opima opima in the Western Carpathians (Cicha et al. 1971), the species was first seen together with Miogypsina tani in Aquitaine, where the Aquitanian stage was defined (Anglada 1971; Jenkins 1966). The first occurrence of Globigerinoides primordius was found to be without value by Steininger et al. (1976) for defining the Oligocene/Miocene boundary, but Berggren et al. (1995) suggested that the early forms of Globigerinoides (G. primordius) are useful for recognition of the Upper Oligocene—Lower Miocene interval.

EM2. ?Middle—late Aquitanian (samples 91-117 in the Ebulbahar section but partly covered in the Kelereßdere section) Assemblage Zone is defined by the presence of planktonic foraminifera: Globigerinoides sacculifer, and Globigerinoides binaensis and benthonic foraminifera: Miogypsina sp., and Miogypsinoïdes sp. (M. cf. complanatus), Miogypsinoïdes bantarum corresponding to Subzone M1b (Globorotalia kugleri/Globoquadrina dehiscens Concurrent Range Subzone) defined by the concurrent range of Globorotalia kugleri and Globoquadrina dehiscens between the FO of Globoquadrina dehiscens and the LO of Globorotalia kugleri (Aquitanian), 23.2—21.5 Ma).

Discussion: Sakınç (1982) distinguished a Miogypsinoïdes dehaartii-Lepidocyclina (Eu)Lepidina gigas biozone for the Lower Miocene (Burdigalian) in Eastern Anatolia. In the study by Orçen (2001), the presence of Miogypsina irregularis, Miogypsina intermedia and Miogypsinoïdes dehaartii was interpreted as being Indo-Pacific derived and a marine connection was suggested between Southeastern Anatolia and the Arabic Platform during the Burdigalian. The Kelereßdere section, which was dominated by shallower conditions than the Ebulbahar section during the Oligocene and Miocene, also yielded Operculina complanata, Amphistegina sp., Austrotrilina asmariensis, Archias kirkukensis, Heterostegina sp., Nephrolepidina sp., and Dendritina sp.

EM3. Early-middle Burdigalian (samples 118-125 in c and 120-125 in the Kelereßdere section) The Assemblage Zone is defined by the presence of Lepidocyclina gigas, Miogypsinoïdes dehaartii, Miogypsinoïdes grandipustulosa, Miolepidocyclina sp., and Miogypsina sp. Miolepidocyclina gigas, Miogypsinoïdes dehaartii-Lepidocyclina (Eu)Lepidina gigas biozone for the Lower Miocene (Burdigalian) in Eastern Anatolia. In the study by Orçen (2001), the presence of Miogypsina irregularis, Miogypsina intermedia and Miogypsinoïdes dehaartii was interpreted as being Indo-Pacific derived and a marine connection was suggested between Southeastern Anatolia and the Arabic Platform during the Burdigalian. The Kelereßdere section, which was dominated by shallower conditions than the Ebulbahar section during the Oligocene and Miocene, also yielded Operculina complanata, Amphistegina sp., Austrotrilina asmariensis, Archias kirkukensis, Heterostegina sp., Nephrolepidina sp., and Dendritina sp.

Discussion: Sakınç (1982) distinguished a Miogypsinoïdes dehaartii-Lepidocyclina (Eu)Lepidina gigas biozone for the Lower Miocene (Burdigalian) in Eastern Anatolia. In the study by Orçen (2001), the presence of Miogypsina irregularis, Miogypsina intermedia and Miogypsinoïdes dehaartii was interpreted as being Indo-Pacific derived and a marine connection was suggested between Southeastern Anatolia and the Arabic Platform during the Burdigalian. The Kelereßdere section, which was dominated by shallower conditions than the Ebulbahar section during the Oligocene and Miocene, also yielded Operculina complanata, Amphistegina sp., Austrotrilina asmariensis, Archias kirkukensis, Heterostegina sp., Nephrolepidina sp., and Dendritina sp.

Discussion: Orçen (2001) investigated the Early—Middle Miocene marine connections of Turkey based on species to the Family Miogypsiniidae in the Taurids and Arabic Platform. He postulated that the presence of Miogypsina gunteri and Miogypsinoïdes complanatus in Aquitanian sediments may imply a marine connection with Indo-Pacific. He suggested that Miogypsinoïdes complanatus is the first representative of the Miogypsiniidae and that it occurred in the upper Chattian of the Mediterranean region. However, he showed that the first appearance of Miogypsinoïdes complanatus was diachronous and occurred in the early Aquitanian in Italy, Greece and Turkey (Muş). Similarly, Sakınç (1982) has distinguished an Operculina ammonoides-Miogypsinoïdes complanatus biozone indicating its Early Miocene (Aquitanian) age in Eastern Anatolia.

EM4. Late Burdigalian—early Langhian (samples 126—129 in the Ebulbahar section but not recorded in the Kelereßdere section due to the overlying unconformity). The Assemblage Zone is defined by the presence of Praeorbulina spp. (Praeorbulina glomerosa, P. sicana, P. transitoria) and corresponds to the M4 (Catapsydrax dissimilis-Praeorbulina sicana Interval Zone defined by the biostratigraphic interval between the LO of Catapsydrax dissimilis and the FO of Praeorbulina sicana (late Burdigalian), 17.3—16.4 Ma) to M5 (Praeorbulina sicana-Orbulina suturalis Interval Zone defined by the biostratigraphic interval between the FO of Praeorbulina sicana and the FO of Orbulina suturalis (Langhian), 16.4—15.1 Ma). The top of the zone is not defined because of the overlying unconformable surface.
Miogypsinoides spp. and Miogypsinina spp. are still present in this zone together with Praeorbulina sicana, P. transitoria, and P. glomerosa (Figure 6) which suggests that their ranges should extend at least until the late Burdigalian (M4 zone of Berggren et al. 1995) in Eastern Anatolia (Ercüment Sirel, pers. comm. 2005).

Lepidocyclina sp., Nephrolepidina sp., Eulepidina sp., Operculina sp., Heterostegina sp., Amphistegina sp., Planorbulina sp., Rotalia sp., Spiroclypeus sp., Globigerinoides sp.; Globigerinidae, Bryozoa, and red algae occur consistently throughout the section.

Calcereous Nannoplankton (Calibrated Using the Zonation of Martini 1971)

Correlation of dinoflagellate assemblages with calcareous nannoplankton has been always problematic due to reworking, environmental constraints and poor preservation (Berger 1992) particularly in shallow marine conditions. Berggren et al. (1995) and references therein also emphasized that many FOs and LOs of Cenozoic calcareous nannofossils are unreliable due to their poor preservation and latitudinal diachronity. Müller (1979) also indicated that, even though the absence of small forms of Helicosphaera may reflect the base of NN1, the absence of the biostratigraphic marker Discoaster druggii makes detection of the boundaries between NP25, NN1, and NN2 of Martini (1971) almost impossible in the Mediterranean region. As indicated by de Verteuil & Norris (1996), variations in the chronostratigraphic position of the same biostratigraphic event in different basins may be related to reworking at one or both sites, and/or diachronity of a species’ range. The shallow marine-dominant nature of the depositional environments and intensive reworking of Upper Cretaceous, Eocene and even Oligocene species make studies of biozonation based on calcareous nannoplankton very difficult in Eastern Anatolia. Since a biozonation based on nannoplankton would be less meaningful for the reasons mentioned above, only different nannoplankton assemblages have been distinguished, three of which are identified in Eastern Anatolia. They were compared with results from planktonic foraminifera and palynology and interpreted as representing latest Rupelian to earliest Chattian, Chattian, and ?Early Miocene periods.

Assemblage 1: May correspond to Zone NP24 (Sphenolithus distentus zone), is latest Rupelian—earliest Chattian in age, defined by the presence of Sphenolithus ciperoensis, Helicosphaera recta, Sphenolithus distentus, Sphenolithus predistentus. Intense reworking from Eocene and Upper Cretaceous sediments has also been detected.

Assemblage 2: May correspond to Zone NP25 (Sphenolithus ciperoensis zone), is Late Oligocene (Chattian) in age, defined by the presence of Sphenolithus ciperoensis, Helicosphaera recta, Sphenolithus distentus, and the absence of Sphenolithus predistentus. Intense reworking from Eocene and Oligocene sediments is also detected.

Assemblage 3: May correspond to Zone NN1 (Triquetrorhabdus carinatus Zone), which is latest Oligocene and Early Miocene in age, defined by the absence of the above mentioned Oligocene nannoplankton such as Sphenolithus ciperoensis, Helicosphaera recta, and Sphenolithus distentus. Helicosphaera obliqua is the only Oligocene species still present in this interval. Shallow marine conditions and intense reworking from Eocene and Oligocene might be responsible for the absence of Early Miocene zonal markers.

Palaeoenvironments

Information from palynomorphs, nannoplankton, and foraminifera suggests that Upper Oligocene and Lower Miocene sediments were deposited under brackish water, shallow and relatively deeper marine conditions related to fluctuating sea level. Shallowing-upwards deposition occurred during the Late Oligocene and was followed the Early Miocene regional transgression which continued to the end of the Middle Miocene. However, Lower Miocene sediments still represent restricted marine-nearshore environments. Due to withdrawal of the sea, Upper Miocene-Pliocene sediments were deposited in terrestrial (lacustrine and fluvial) environments in the Muş Basin.

Palynofacies analyses have been carried out by means of palynomorph assemblages and sedimentary organic matter. In general, palynomorph assemblages from Upper Oligocene sediments in Eastern Anatolia consist mostly (up to 85–95%) of terrestrial palynomorphs (spores, pollen, and fungal spores). Like the palynomorph content, organic matter assemblages are dominated by terrestrial (woody, coaly and herbaceous) type of organic matter which indicates shallow marine conditions of deposition during the Late Oligocene (Figures 7 & 8).
Figure 6. Bio-chronostratigraphic chart and stratigraphic occurrences of selected taxa (A: acritarch; D: dinoflagellate; P: pollen; PF: planktonic foraminifer; BF: benthic foraminifer; R: reworked; Unf. Env: unfavourable environment; Uns. Lit: unsuitable lithology; -- peak occurrences).
Figure 7. Biostratigraphic log of the Ebulbahar measured stratigraphic section.
Figure 8. Biostratigraphic log of the Kelereşdere measured stratigraphic section.
Percentages of marine dinoflagellates vary from 5% to 15% in relation to fluctuating sea-level conditions. Like the marine palynomorphs, marine-amorphous organic matter content is in the range of 5–20% in most of the Upper Oligocene samples but reaches more than 40–50% in the late Aquitanian in relation to regional transgression.

Fresh water algae (*Pediastrum* spp., *Botryococcus braunii, Ovoidites ligneolus, Ovoidites parvus*) have been identified at the end of the Chattian, close to the Oligocene–Miocene boundary, and in the Upper Miocene–Pliocene (immediately above the unconformity surface). The absence of freshwater algae, and the presence of a terrestrial palynomorph-dominated assemblage with some marine dinoflagellates suggest shallow marine deposition during the Late Oligocene. However, freshwater algae found together with marine dinoflagellates at the Oligocene–Miocene boundary show that deposition could have taken place under brackish water and restricted marine conditions without any depositional break in the latest Chattian–earliest Aquitanian. The shallowing-upwards nature of deposition during the Late Oligocene might be responsible for the changes in environment from shallow marine to restricted marine and brackish water conditions. Brackish to restricted marine deposition at the Oligocene–Miocene boundary was followed again by relatively deeper conditions in the late Aquitanian. Shallowing in the early Burdigalian produced reefal limestone deposition at many localities in Eastern Anatolia. The last deepening event at the end of the Burdigalian and the ?early Langhian, was followed by completely terrestrial (lacustrine and fluvial) deposition.

Stable oxygen isotope data can be used successfully as a proxy for changes in eustatic sea-level and ice-sheet volumes at the poles (Zachos et al. 2001). Increasingly such records coincide with times of glaciation, growth of ice-sheets, and subsequent falls in relative sea level that may be traced as major unconformities in the shallower settings. Van Simaeys (2004) suggested that early Chattian transgression is genetically related to the Late Oligocene Warming Event (LOWE) of Zachos et al. (2001), and Rupelian–Chattian unconformity in the stratotype area is also genetically related to Oligocene Glacial Maximum (OGM) in southern North Sea basins. This cooling event, associated relative sea level fall, and the growth of Antarctic ice-sheets in the Oligocene have also been reported by Miller et al. (1991, 1998) from deep-sea benthic foraminiferal ~14C records such as the Oi2b-event which Van Simaeys (2004) indicated at the same chronostratigraphic position in the central Mediterranean. As reported by Van Simaeys (2004), relative sea level fall related to OGM (approximately between 27.3 and 26.8 Ma) may have caused subaerial exposure, erosion, and a break in sedimentation in marginal marine conditions, when, transgressive deposits related to LOWE (approximately 26.0 Ma) unconformably overlie Rupelian successions in southern North Sea basins. Shallowing at the end of the Rupelian and at the base of the Chattian in Eastern Anatolia may have been caused by a major cooling event so called Oligocene Glacial Maximum (OGM of Van Simaeys 2004), and associated sea level fall at the end of the Rupelian. Eustatic sea level rise related to the Late Oligocene Warming Event (LOWE) of Zachos et al. (2001) occurred in the early Chattian and may have been responsible for the transgressive deposits conformably overlying Rupelian sediments in Eastern Anatolia. Moreover, eustatic sea level fall indicated by Zachos et al. (2001) in the latest Chattian to early Aquitanian should be related to brackish water to transitional conditions in depositional environments (samples 79–89 in Figure 4) following shallow marine conditions during the Chattian in the Muß Basin. Very low diversity in dinoflagellates, accompanied by a fresh water alga called *Botryococcus braunii*, supports this interpretation. Zevenboom (1996) reported two major cooling events and relative falls in sea level at the Lemme-Carrosio section in Italy during the Oligocene/Miocene transition. Since these events can be calibrated with Haq et al.’s (1988) third-order sea level cycles, they can be interpreted as global in nature and seem to coincide with the relative sea level fall indicated at the Oligocene/Miocene boundary in the present study. High abundance of marginal marine dinoflagellates such as *Homotryblium* spp. and increasing diversity of dinoflagellates in the overlying samples, (90–94 in Figure 4), correlate with the early Aquitanian sea-level rise of Zachos et al.’s (2001) curve. Eustatic sea-level fall in the latest Aquitanian to early Burdigalian may be represented by a very thick succession of limestones (samples 95–109 in Figure 4), consisting mainly of benthonic foraminifers, overlying relatively deeper marine sediments of Aquitanian age in the Müs Basin and followed in turn by much deeper marine conditions represented by samples 110–117 in Figure 4 and related to the early to middle Burdigalian sea level rise documented by Zachos et al.
In general, as reported by Dybkjær (2004) sequence developments seem to match with sea level rises (warmer periods); sequence boundaries, on the other hand, seem to coincide relative sea level falls (colder periods). Relative sea level falls occur at the base of the Rupelian, the end of the Chattian, and in the latest Aquitanian (Haq et al. 1987, 1988; Zachos et al. 1999, 2001; Van Smaeyens 2004; Van Smaeyens et al. 2004) might have been traced in the Muş Basin, especially the Kelereşdere section which experienced much shallower conditions than the Ebulbahar section during the Tertiary. Very good correlation between the eustatic sea level changes in Zachos et al.’s (2001) curve and the palynological associations may indicate that the main driving mechanism was eustacy during the deposition of Oligocene–Miocene sediments in Eastern Anatolia. However, as reported in several studies (Şengör 1980; Şaroğlu et al. 1980; Şaroğlu & Güner 1981; Şengör & Yilmaz 1981; Şaroğlu 1985; Şaroğlu & Yilmaz 1987, 1991; Yilmaz et al. 1988), the Eocene and Miocene periods were represented by major tectonic events in Eastern Anatolia. Therefore, even though the main driving mechanism was eustacy during the formation of sequences, the latter were tectonically enhanced.

Conclusions

Biostratigraphically important dinoflagellate events calibrated by means of planktonic foraminifera and calcareous nannoplankton were first documented in the present study for Oligo–Miocene sediments in the Muş Basin, Eastern Anatolia. As shown in detail for the biozonation, FOs and LOs of selected dinoflagellates are important in the establishment of a biostratigraphic framework. The LO of Wetzeliella gochtii in the “latest” Rupelian, the LO of Deflandrea spp. in the latest Chattian, peak occurrences of Chiropteridium spp. in the early and late Aquitanian, the FO of Hystrichosphaeropsis obscura, followed by the FO of Membranilarnacea? picena in the late Aquitanian have particular relevance for regional correlations.

The following conclusions are suggested from biostratigraphic analysis of Ebulbahar and Kelereşdere’s measured stratigraphic sections: the Oligocene–Miocene boundary may be placed by calibration of planktonic foraminifera, nannoplankton, palynological biozonations. This boundary may approximately corresponding to the 830–840 m interval, samples labeled as 78–79 in the Ebulbahar section, and 590–600 m interval, samples labeled as 108–109 in the Kelereşdere section. Similarly, the Rupellian-Chattian boundary may be placed at 390–400 m level, corresponding to the samples labeled as 72–73 in the Ebulbahar section, and 210–220 m level, samples labeled as ?95–96 in the Kelereşdere section.

In the earlier studies Compositae, and high abundances of Umbelliferae and Gramineae were suggested as being good indicators of the Miocene in Turkey. Umbelliferae and Gramineae have been reported from Upper Oligocene sediments before in rare occurrences (Benda 1971a, b; Benda et al. 1977, 1979; Ediger et al. 1990; Bati 1996). The only record of Compositae pollen in Late Oligocene sediments of Eastern Anatolia was by Bati & Alişan (1991). Hochuli (1978) recorded Compositae (tubuliflorae-type) occurrences from Egerian sediments in Central and Western Paratethys, but as the Egerian includes both Upper Oligocene and Lower Miocene, the reliability of Oligocene occurrences of Compositae remains questionable in his paper. In the light of the present study, the Miocene zonation of some palynomorphs has been modified and stratigraphic ranges of the Compositae (tubuliflorae-type), small/less ornamented Umbelliferae and Gramineae pollen should be extended into the Chattian and even Rupelian on the basis of recent work by Bati & Sancay (2007).

The presence of Miogypsina spp. and Miogypsinoides spp. with Praeorbulina sicana, P. transitoria, and P. glomerosa in zone EM4 suggests that their ranges should extend at least until late Burdigalian (M4 zone of Berggren et al. 1995) in Eastern Anatolia.

High abundances of Deflandrea spp., rare Polyshaeridium zoharyi, very rare occurrences of terrestrial warm indicators (such as Carya, Tilia, Alnus etc.) and high abundances of dry-cold indicators (Compositae, Gramineae, Chenopodiaceae, and Umbelliferae) all suggest cold sea surface temperatures with high nutrient contents, and dry, temperate to subtropical climates in which mean annual temperatures varied between 15.6 and 21.3 °C during the deposition of Oligo–Miocene sediments.

Combined information from palynomorphs, calcareous nannoplankton and foraminifer suggests that Upper Oligocene and Lower Miocene sediments were deposited under brackish water, shallow and then
relatively deeper marine conditions related to a fluctuating sea level; Upper Miocene to Pliocene sediments were deposited under lacustrine to fluvial depositional environments in the Muş Basin, Eastern Anatolia.

Relative sea level falls in the late Rupelian and latest Aquitanian (Haq et al. 1987, 1988; Zachos et al. 1999, 2001; Van Simaeys 2004; Van Simaeys et al. 2004) may be represented by major unconformities in Eastern Anatolia, especially at the Kelereşdere section, which had experienced much shallower conditions than the Ebulbahar section during the Tertiary. However, not only eustacy but also tectonic events made important contributions in the formation of unconformities.

A regional marine transgression suggested by Demirtaşlı & Pisoni (1965), occurred at the beginning of the Miocene, and the sea withdrew at the end of this epoch according to study carried out to the north of Lake Van. The first event could be interpreted as a continuation of a Late Oligocene transgressive peak indicated by Zachos et al. (2001), Van Simaeys (2004), and Van Simaeys et al. (2004). As a result, high numbers of Chiropteridium spp. occur in samples interpreted as Early Miocene in age in both Ebulbahar and Kelereşdere sections, but this abundance of Chiropteridium spp. could be related to the Early Miocene regional transgression indicated by Demirtaşlı & Pisoni (1965).

Demirtaşlı & Pisoni (1965) also reported that the lowest part of the Adilecevaz Limestone contains arenitic limestones of Aquitanian age that can be correlated with strata in the Muş and Van basins. The upper part of the Adilecevaz Limestone of Demirtaşlı & Pisoni (1965) has later named the Burdigalian Reefal Limestone Member of the Aşkale Formation by Şahintürk & Kasar (1980). Therefore Aquitanian arenitic limestones indicated in Demirtaşlı & Pisoni’s study correspond to the lowermost part of the Aşkale Formation in the Kelereşdere section (about 620 m level in Figure 5). This information is compatible with the present study in that arenitic and lithic limestone layers of the lowermost Aşkale Formation conformably overlie sandstone-marl intercalations belonging to the uppermost part of the Kelereş Formation in the Muş Basin. No evidence was seen for a probable unconformity in the field, and the transition between the Aşkale and Kelereş formations, and the boundary between Oligocene and Miocene sediments, seem to be conformable in the Muş Basin even though some local unconformities below the biostratigraphic resolution may be seen in shallower, transitional to terrestrial parts of the region.

Acknowledgements

We would like to thank Turkish Petroleum Corporation for giving permission for this paper to be published. We express our sincere appreciation to the field geologists from Turkish Petroleum Corporation Research and Exploration Departments (Ömer Şahintürk, Ahmet Çaptuğ, Kemalettin Tokatlı and Bülent Sadioglu) for their great efforts during the field study and for sharing us their invaluable experience of Eastern Anatolian geology. Special thanks go to Dr. Lucy E. Edwards from USGS and Kaya I. Erteğ from Turkish Petroleum Corporation Research Center for their valuable contributions during the identification of the dinoflagellates. We greatly appreciate the help of Dr. Ercüment Sirel of Ankara University for sharing with us his valuable experience of the identification and stratigraphic distribution of benthic foraminifers. We would like to thank Dr. Volker Mosbrugger and Dr. Tursten Utescher, from the Institute and Museum of Geology and Palaeontology in Tübingen, Germany, and M. Serkan Akkiraz from Dokuz Eylül University for their technical support in palaeoclimatologic reconstructions by CLIMSAT. Finally, we are greatly indebted to Dr. Demir Altn for his encouragement during the preparation of the paper and for reading the manuscript.

References

ZEVENBOOM, D. 1996. Late Oligocene–Early Miocene dinoflagellate cysts from the Lemme-Carrosio section (NW Italy); biostratigraphy and palaeoenvironmental interpretation. Giornale di Geologia 98, 81–93.
Taxonomic Notes

Alphabetical listing of dinoflagellate cysts and acritarchs identified in this study.

Apteodinium australiense (Deflandre & Cookson 1955) Williams 1978
Chiropteridium galeae (Maier 1959) Sarjeant 1983
Chiropteridium sp.
Chiropteridium lobospinosum Gocht 1960
Chiropteridium placacanthum (Deflandre & Cookson 1955) Davey et al. 1969;
Eaton et al. 2001 - includes Systematophora ancyrea
Cleistosphaeridium cantharellus (Brosius 1963) Gocht 1969
Cleistosphaeridium fibrospinosum Davey & Williams 1966
Cleistosphaeridium inodes (Klumpp 1953) Eisenack 1963 species complex - includes forms transitional to C. fibrospinosum
Cordosphaeridium minimum (Morgenroth 1966) Benedek 1972
Cordosphaeridium tenuitabulatum (Gerlach 1961) Helenes 1984
Cyclopsiella lusatica (Krutzsch 1970) Strauss & Lund 1992
Cordosphaeridium sp.
Dapsilidinium pseudocolligerum (Stover 1977) Bujak et al. 1980
Deflandrea leptodermata Cookson & Eisenack 1965
Deflandrea heterophlycta Cookson & Eisenack 1955
Deflandrea phosphoritica Eisenack 1938
Deflandrea spinulosa Cookson & Eisenack 1965
Distatodinium biffii Brinkhuis et al. 1992
Ennaedocysta pectiniformis complex (Gerlach 1961) Stover & Williams 1995
(probably includes E. arcuatum and E. multicornutum)
Fibrocysta sp.
Glaphyrocytia sp.
Hafniaphera sp.
Heteraulacacysta sp.
Homotryblium oceanicum Eaton 1976
Homotryblium plectitum Drugg & Loeblich 1967
Homotryblium tenuispinosum Davey & Williams 1966
Homotryblium valium Stover 1977
Hystrichokolpoma cinctum Klumpp 1953
Hystrichokolpoma spp. Deflandre & Cookson 1985
Hystrichokolpoma pusillum Biffi & Manum 1988
Hystrichokolpoma rigaudiae Deflandre & Cookson 1955
Hystrichosphaeropsis obscura Habib 1972
Impagidinium sp.
Lingulodinium machaerophorum (Deflandre & Cookson 1955) Wall 1967
Membranilarnacea ? picena Biffi & Manum 1988
Opeculodinium microtrinatum Islam, 1983
Opeculodinium spp.
Pentadinium sp.
Pentadinium laticinctum Gerlach 1961 subsp. laticinctum
Polyosphaeridium sp.
Polyosphaeridium zoharyi (Rossignol 1961) Bujak et al. 1980
Reticulatosphaera actinocoronata (Benedek 1972) Bujak & Matsuoka 1986
Riculagysta perforata Stover 1977
Selenopemphix nephroides Benedek 1972
Spiniferites mirabilis (Rossignol 1964) Sarjeant 1970
Spiniferites pseudofurcatus (Klumpp 1963) Sarjeant 1970
Spiniferites spp.
Thalassiphora pelagica (Eisenack 1954) Eisenack & Gocht 1960
Tuberculodinium vancampoae (Rossignol 1962) Wall 1967
Wetzeliella articulata Eisenack 1938
Wetzeliella gochti Costa & Downie 1976
Wetzeliella symmetrica Weiler 1956
miscellaneous unidentified chorote fragments
miscellaneous areoligeracean forms
PLATE 1

Scale bar represents 10 micron for the plates 1-10.
1–7. *Hystrichokolpoma pusillum* (Ebulbahar section, Sample No: 70, 92, 93)
8–9. *Dapsilidinium pseudocolligerum* (Ebulbahar section, Sample No: 93)
10. *Dapsilidinium* sp. (Ebulbahar section, Sample No: 92)
11. *Polysphaeridium* sp. (Ebulbahar section, Sample No: 93)
12. *Cleistosphaeridium placacanthum* (Ebulbahar section, Sample No: 93)
13. *Cleistosphaeridium* sp. (Ebulbahar section, Sample No: 92)
14. *Operculodinium* sp. (Ebulbahar section, Sample No: 111)
15. *Operculodinium* sp. (Kelereşdere section, Sample No: 106)
PLATE 2

6–7. *Hystrichosphaeropsis obscura* (Ebulbahar section, Sample No: 93)
8–9. *Cleistosphaeridium placacanthum* (Ebulbahar section, Sample No: 116)
10–13. *Impagidinium* sp. (Ebulbahar section, Sample No: 93, 111, 116)
14–15. *Cyclopsiella lusatika* (Ebulbahar section, Sample No: 93)
PLATE 3

1–3, 8, 9. Homotryblium plectilum (Ebulbahar section, Sample No: 72, 93, 115, 118)
4–7. Homotryblium plectilum/vallum (transitional forms) (Ebulbahar section, Sample No: 93)
10. Hystrichokolpoma rigaudiae (Ebulbahar section, Sample No: 82)
11. Spiniferites mirabilis (Ebulbahar section, Sample No: 92)
12–13. Spiniferites pseudofurcatus (Ebulbahar section, Sample No: 116)
14–15. Reticulatosphaera actinocoronata (Ebulbahar section, Sample No: 111, 116)
PLATE 4

1–4. *Enneadacysta pectiniformis* complex (Ebulbahar section, Sample No: 93, 111; Kelereşdere section, Sample No: 109)
5–8. *Cordosphaeridium fibrospinosum* (Ebulbahar section, Sample No: 72, 91, 93; Kelereşdere section, Sample No: 92)
9. *Polysphaeridium zoharyi* (Ebulbahar section, Sample No: 93)
10–12. *Spiniferites mirabilis* (Ebulbahar section, Sample No: 93)
13–15. *Cribroperidinium tenuitabulatum* (Ebulbahar section, Sample No: 91, 93)
PLATE 5

1–5. Thalassiphora pelagica (Ebulbahar section, Sample No: 70, 72, 93, 116; Kelereşdere section, Sample No: 92)
6, 7, 9, 10. Deflandrea sp. (Ebulbahar section, Sample No: 66, 70, 72)
8. Deflandrea phosphoritica (Ebulbahar section, Sample No: 72)
11–13. Tuberculodinium vancampoae (Ebulbahar section, Sample No: 70, 72)
14. Distatodinium sp. (Kelereşdere section, Sample No: 92)
15. Distatodinium bifii (Kelereşdere section, Sample No: 92)
PLATE 6

1. *Wetzeleiella gochtii* (Ebulbahar section, Sample No: 70)
2–3. *Wetzeleiella* sp. (Ebulbahar section, Sample No: 70, 72)
7. *Wetzeleiella symmetrica* (Ebulbahar section, Sample No: 70)
4, 6. *Wetzeleiella articulata* (Ebulbahar section, Sample No: 70)
8. *Polysphaeridium zoharyi* (Ebulbahar section, Sample No: 93)
10. *Operculodinium microtriainum* (Ebulbahar section, Sample No: 93)
11–12. *Riculagosta perforata* (Ebulbahar section, Sample No: 93)
13–15. *Operculodinium* sp. (Ebulbahar section, Sample No: 93, 116)
PLATE 7

1–3. *Fibrocysta* sp. (high, mid, and low focus) (Ebulbahar section, Sample No: 70)
4. *Selenopemphix nephroides* (Ebulbahar section, Sample No: 70)
5. *Cordosphaeridium minimum* (Ebulbahar section, Sample No: 111)
6. *Hystrichokolpoma rigaudiae* (Ebulbahar section, Sample No: 112)
7–8. *Polysphaeridium zoharyi* (Ebulbahar section, Sample No: 93, 111)
9. *Homotryblium oceanicum* (Ebulbahar section, Sample No: 93)
10–12. *Pentadinium* sp. (Ebulbahar section, Sample No: 72, 116)
13. *Heteraulacacysta* sp. (Ebulbahar section, Sample No: 92)
14–15. unidentified chorate fragment (Ebulbahar section, Sample No: 70)
PLATE 8

1–2. *Lingulodinium machaerophorum* (Ebulbahar section, Sample No: 112)
3–10, 12, 13. *Chiropteridium galea* (Ebulbahar section, Sample No: 91, 92, 93; Kelereşdere section, Sample No: 115)
11. *Chiropteridium lobospinosum* (Ebulbahar section, Sample No: 93)
14. Chitinous foraminiferal linings (Kelereşdere section, Sample No: 92)
15. *Botryococcus braunii* (Ebulbahar section, Sample No: 77)
PLATE 9

1–9. Compositae (tubuliflorae-type) (Ebulbahar section, Sample No: 66, 74, 77, 92; Kelereşdere section, Sample No: 92, 96, 109, 115)
10–11. Compositae (liguliflorae-type) (Kelereşdere section, Sample No: 159)
13. Compositae-type pollen (Ebulbahar section, Sample No: 78)
13–14. Umbelliferae (Ebulbahar section, Sample No: 66, 70; Kelereşdere section, Sample No: 109, 118)
15. Monoporopollenites gramineoides (Kelereşdere section, Sample No: 106)
PLATE 10

1–3. Slowakipollenites hipophaeoides (Ebulbahar section, Sample No: 70; Kelereşdere section, Sample No: 106)
4–5. Mediocolpopollis compactus (Kelereşdere section, Sample No: 92, 106)
6. Dicolpopollis kalewensis (Ebulbahar section, Sample No: 70)
7. Verucatosporites favus (Ebulbahar section, Sample No: 82)
8. Subtriporopollenites simplex (Kelereşdere section, Sample No: 109)
9. Polyoporopollenites undulosus (Kelereşdere section, Sample No: 109, 118)
10. Periporopollenites multiporatus (Ebulbahar section, Sample No: 74)
11. Polyvestibulopollenites verus (Kelereşdere section, Sample No: 106)
12. Lusatisporites perinatus (Kelereşdere section, Sample No: 92)
13. Saxosporis sp. (Ebulbahar section, Sample No: 116)
14. Cicatricosisporites sp. (Ebulbahar section, Sample No: 70)
15. Echinatisporis sp. (Ebulbahar section, Sample No: 86)
PLATE 11

1a–c. *Globorotalia opima opima* (Kelereşdere section, Sample No: 74)
2a–c. *Globigerina cf. ciperoensis ciperoensis* (Kelereşdere section, Sample No: 99)
3a–c. *Globorotalia obesa* (Kelereşdere section, Sample No: 115)
4a–c. *Globigerina praebulloides*. (Kelereşdere section, Sample No: 115)
5a–c. *Globigerina venezuelana* sp. (Kelereşdere section, Sample No: 115)
PLATE 12

1a–c. Globigerinoides primordius (Kelerepere section, Sample No: 113)
2a–c. Catapsydrax dissimilis (Ebulbahar section, Sample No: 93)
3a–c. Globigerina binaensis (Ebulbahar section, Sample No: 93)
4a–c. Globigerinoides trilobus sacculifer (Ebulbahar section, Sample No: 94)
5a–c. Globigerinoides gr. trilobus (Ebulbahar section, Sample No: 94)
PLATE 13

1. 2. Miogypsinoides cf. bantamensis (Ebulbahar section, Sample No: 96)
3. Miogypsinoides bantamensis (Ebulbahar section, Sample No: 96)
4. Miogypsinoides bantamensis (Ebulbahar section, Sample No: 99)
5. Miogypsinoides cf. dehaarti (Ebulbahar section, Sample No: 119)
6. Miogypsinoides (Ebulbahar section, Sample No: 119)
7. Miogypsinoides grandipustulosa (Ebulbahar section, Sample No: 102)
8. Heterostegina sp. (Ebulbahar section, Sample No: 97)
9, 10. Eulepidina sp. (Ebulbahar section, Sample No: 119)
11. Nephrolepidina sp. (Ebulbahar section, Sample No: 100)
12. Nephrolepidina cf. tournoueri (Ebulbahar section, Sample No: 97)
13. Mirolepidocytilina sp. (Ebulbahar section, Sample No: 119)
14. Spirocytypeus sp. (Ebulbahar section, Sample No: 104)
15. Lepidocytilina gigas (Ebulbahar section, Sample No: 119)
16. Praecorbula cf. sicana (Ebulbahar section, Sample No: 127)
17, 18. Praecorbula transitoria (Ebulbahar section, Sample No: 129)
19–21. Praecorbula gr. glomerosa (Ebulbahar section, Sample No: 129)
PLATE 14

1. Spiroclupeus sp. (Keleresedere section, Sample No: 120)
2. Globigerinoides gr. trilobus (Keleresedere section, Sample No: 97)
3. Amphistegina sp. (Keleresedere section, Sample No: 121)
4. 9. Austrotrilina howchini (Keleresedere section, Sample No: 121)
5. Miogypsinoides sp. (Keleresedere section, Sample No: 120)
6. Miogypsina sp. (Keleresedere section, Sample No: 122)
7. Archias sp. (Keleresedere section, Sample No: 123)
8. Operculina complanata (Keleresedere section, Sample No: 121)
10. Heterostegina sp. (Keleresedere section, Sample No: 123)
11. Borelis sp. (Keleresedere section, Sample No: 123)
12. Nephrolepidina sp. (Keleresedere section, Sample No: 123)
13. Nephrolepidina sp. (Keleresedere section, Sample No: 122)
14. Rotalia sp. (Keleresedere section, Sample No: 121)
PLATE 15

1. *Sphenolithus distentus* (Ebulbahar section, Sample No: 80) under crossed polarized light (XPL)
2. 3. *Sphenolithus distentus* (Kelereşdere section, Sample No: 65, 86) (XPL)
4. *Sphenolithus ciperoensis* (Kelereşdere section, Sample No: 90) (XPL)
5. *Sphenolithus ciperoensis* (Kelereşdere section, Sample No: 86) XPL 0°
6. *Sphenolithus ciperoensis* (Kelereşdere section, Sample No: 86) XPL 45°
7–9. *Helicosphaera recta* (Kelereşdere section, Sample No: 84, 116) (XPL)
10. 11. *Helicosphaera obliqua* (Kelereşdere section, Sample No: 112) (XPL)
12. *Sphenolithus predistentus* (Kelereşdere section, Sample No: 77) (XPL)
13. *Cyclicarcolithus abisectus* (Ebulbahar section, Sample No: 82) (XPL)
14. *Dictyococcites bisecta* (Ebulbahar section, Sample No: 82) (XPL)
15. *Discaster cf. calculosus* (Kelereşdere section, Sample No: 92 under parallel light) (PL)
PLATE 16

1. Watznaueria barnesae (Keleredere section, Sample No: 66) (XPL)
2. Eiffellithus turrisieffelli (Keleredere section, Sample No: 84) (XPL)
3. Eiffellithus eximius (Keleredere section, Sample No: 85) (XPL)
4. Quadrum gothicum (Ebulbahar section Sample No: 167) (XPL)
5. Ceratolithoides kamptneri (Keleredere section, Sample No: 88) (XPL)
6. Calculites ovalis (Keleredere section, Sample No: 91) (XPL)
7. Microrhabdulus decoratus (Keleredere section, Sample No: 88) (XPL)
8. Fasciculithus tympaniformis (Keleredere section, Sample No: 76) (XPL)
9. Discoaster multiradiatus (Keleredere section, Sample No: 116) (PL)
10. Sphenolithus radians (Keleredere section, Sample No: 83) (XPL)
11. Zygrhablithus bijugatus (Keleredere section, Sample No: 72) (XPL)
12. Tribrachiatus orthostylus (Keleredere section, Sample No: 102) (PL)
13. Discoaster iodoensis (Keleredere section, Sample No: 82) (PL)
14. Discoaster cf. tani (Keleredere section, Sample No: 84) (PL)
15. Discoaster barbadiensis (Keleredere section, Sample No: 86) (PL)
PLATE 17

1–3. Helicosphaera compacta (Kelereşdere section, Sample No: 83, 89, 91) (XPL)
4–5. Helicosphaera euphratis (Kelereşdere section, Sample No: 88) (XPL)
6. Helicosphaera euphratis (Ebulbahar section, Sample No: 120) (XPL)
7–8. Braarudosphaera bigelowii (Kelereşdere section, Sample No: 92) (XPL)
9. Sphenolithus moniformis (Kelereşdere section, Sample No: 71) (XPL)
10. Cyclicargolithus abisectus (Kelereşdere section, Sample No: 90) (XPL)
11. Coccolithus pelagicus (Kelereşdere section, Sample No: 71) (XPL)
12. Coccolithus pelagicus (Kelereşdere section, Sample No: 84) (PL)
13–15. Discocysta deflandrei (Kelereşdere section, Sample No: 82, 86) (PL)