A Novel Glycosidically Linked Piperidine Alkaloid
From Cyclamen Coum

Nurettin YAYLI & Cemalettin BALTACI
Department of Chemistry, Faculty of Science, Karadeniz Technical University,
61080 Trabzon-TURKEY

Received 13.9.1996

The structure of a novel piperidine type alkaloid from Cyclamen coum was established as 2-β-D-glycopyranosyl-2-undecil-3,5-dihydroxy-6-carboxypiperidine, 1, whose structure has been deduced from spectral data.

Introduction

The occurrence of piperidine alkaloid in marine organisms is mentioned in the literature\(^1-6\). In the course of our studies on bioactive substances from cyclamen organisms, we isolated glucose and undecil substituted piperidine-type alkaioide derivative from the Cyclamen coum and its structure was deduced as 1 from its NMR and FAB-MS spectral data.

Experimental

Instrumentation: NMR spectra were recorded on a Bruker AC 200L NMR at 200 MHz instrument in C\(_6\)H\(_5\)N using TMS as internal standard. IR spectra were taken on a Perkin Elmer 1600 spectrophotometer. (+) FAB-MS spectra were recorded on a Zabspec MS instrument, Flash column chromatography was performed on a silica gel 60 (230-400 mesh) and preparative TLC was performed with precoated silica gel F\(_{254}\) (20 x 20 cm 0.2 mm) plates. A voucher specimen has been deposited in deepfreeze at the Department of Chemistry, Karadeniz Technical University.

Isolation of compound 1: Specimens of the Cyclamen coum were collected in the Giresun Yaghdere region, in the north of Turkey, in March, 1995. The chopped wet plants (~1500 g) were extracted with cold CH\(_3\)OH (1.5 lt, 3 times, 24 hours each). The total aqueous CH\(_3\)OH extract was filtered, and the filtrate was concentrated on a rotary evaporator at 30°C. The aqueous extract thus obtained (0.4 liter) was extracted with CHCl\(_3\) (150 ml, 3 times). After collecting CHCl\(_3\) extract (450 ml), it was evaporated in vacuo at 30-35 °C. The crude mixture obtained (0.9 g) was chromatographed on a Kieselgel 60 (40 g, 230-400 mesh) flash column chromatograph. Elution with n-hexane, followed by discontinuous gradient elution with n-hexane-CHCl\(_3\) (3:1-1:4) and CHCl\(_3\) and then discontinuous gradient elution with CHCl\(_3\)-CH\(_3\)OH (9:1-2:3) and finally with CHCl\(_3\)-CH\(_3\)OH-H\(_2\)O (2:2.6:0.4) gave 43 fractions (ca. 15-20 ml each). Fractions
A Novel Glycosidicly Linked Piperidine Alkaloid From Cyclamen Coum, N. YAYLI & C. BALTACI

39-40 were combined after the analyses of TLC to give the ninth fraction (24.2 mg). The ninth fraction was chromatographed on a Kieselgel 60 (6 g, 230-400 mesh) flash column chromatograph. Elution with, respectively, n-hexane (30 ml), CHCl₃ (30 ml), and then discontinuous gradient elution with CHCl₃CH₃OH (50 ml) (10:1-10:2) gave 34 fractions (ca. 3-4 ml each). Fractions 25-28 were combined after TLC analysis to give compound 1 (17.2 mg) (CHCl₃CH₃OH, 0:0.5, Rf = 0.35) IR (KBr) ν max 3500-2500, 3500-3200, 3320, 2927, 1630, 1378-1360, 1075, 1048, 1025 cm⁻¹; ¹H NMR (C₅D₅N, 200 MHz) and ¹³C NMR (C₅D₅N, 50 MHz) (see Table 1); positive FAB-MS (MNBA) m/z 493(5) [M]+, 409(43) [M-85+H]+, 295(100) [M-175-H₂O+H]+, 235(55) [M-179-2H₂O-CO₂ + H]+, 159(10) [M-179-side-chaine(155)]+; and 155, 141, 127, 113, 99, 85, 71, 57.

Table 1. NMR Data for Compound 1 (200 MHz, C₅D₅N).

<table>
<thead>
<tr>
<th>No</th>
<th>¹³C (δ,ppm)b</th>
<th>APT</th>
<th>¹H (δ,ppm)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>8.48 d, J=9 Hz</td>
</tr>
<tr>
<td>2</td>
<td>70.46</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>78.48</td>
<td>CH</td>
<td>5.50</td>
</tr>
<tr>
<td>4</td>
<td>35.59</td>
<td>CH₂</td>
<td>2.09-1.09</td>
</tr>
<tr>
<td>5</td>
<td>75.92</td>
<td>CH</td>
<td>4.62</td>
</tr>
<tr>
<td>6</td>
<td>51.75</td>
<td>CH</td>
<td>5.31</td>
</tr>
<tr>
<td>-COOH</td>
<td>175.68</td>
<td>C</td>
<td>d</td>
</tr>
<tr>
<td>1'</td>
<td>105.62</td>
<td>CH</td>
<td>5.00 d, J=7.4 Hz</td>
</tr>
<tr>
<td>2'</td>
<td>75.18</td>
<td>CH</td>
<td>4.02</td>
</tr>
<tr>
<td>3'</td>
<td>78.48</td>
<td>CH</td>
<td>3.90</td>
</tr>
<tr>
<td>4'</td>
<td>72.46</td>
<td>CH</td>
<td>4.12</td>
</tr>
<tr>
<td>5'</td>
<td>78.49</td>
<td>CH</td>
<td>4.30</td>
</tr>
<tr>
<td>6'</td>
<td>62.64</td>
<td>CH₂</td>
<td>4.50-4.12</td>
</tr>
<tr>
<td>7'</td>
<td>35.59</td>
<td>CH₂</td>
<td>1.65</td>
</tr>
<tr>
<td>8'</td>
<td>34.00</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>9'</td>
<td>32.13</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>10'</td>
<td>29.63</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>11'</td>
<td>30.02</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>12'</td>
<td>30.02</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>13'</td>
<td>30.02</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>14'</td>
<td>29.63</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>15'</td>
<td>27.95</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>16'</td>
<td>25.90</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>17'</td>
<td>22.95</td>
<td>CH₂</td>
<td>1.24</td>
</tr>
<tr>
<td>18'</td>
<td>14.30</td>
<td>CH₃</td>
<td>0.92 t, J=6.15 Hz</td>
</tr>
</tbody>
</table>

aChemical shifts (ppm) are relative to internal TMS in C₅D₅N.
bAssignments assisted by HETCOR data.
cAssignments assisted by COSY data.
dUnobserved, in exchange with solvent

Hydrolysis of Compound 1: Compound 1 (4 mg) was hydrolyzed with 10% H₂SO₄ for 4 hours. The residue obtained showed the presence of D-glucose when compared with an authentic sample of this sugar on TLC (CH₃OH, Rf = 0.74).
Result and Discussion

The new piperidine type of glycosidically linked alkaloid was isolated from a methanolic extract of *Cyclamen coum*. We assigned the alkaloid structure based on the following evidence. The 1H NMR (pyridine-d$_5$, 200 MHz) spectrum of the compound exhibited a characteristic signal for an anomic proton at δ 5.00 ppm. The coupling constant ($J = 7.4$ Hz) implied a β-configuration of the sugar residue. The 13C NMR (pyridine-d$_5$, 50 MHz) spectra of 1 showed one signal at δ 105.62 ppm for the anomic carbon signal, also indicate of a β-configuration6-7.

The -NH- protons were observed at δ 8.48 (1H, d, J=9 Hz) ppm in the 1H NMR spectrum. The carboxylic proton was unobserved in the 1H NMR spectrum because of exchange with the solvent8. The 1H NMR spectrum further showed piperidine ring signals at δ 5.50 (1H), 5.31(1H), 4.62 (1H) and 2.09-1.09 (2H) ppm. The side chain protons were also observed in the 1H NMR spectrum at δ 1.65 (2H), 1.24 (18H) and 0.92 (3H, t, J = 6.15 Hz) ppm.

Standard 1D and 2D NMR procedures were employed to elucidate the structure of compound 1. Conventional 1H (200 MHz) and 13C (50 MHz) NMR spectra combined with multiplicity-selected (APT) 13C data yielded the gross structure of the molecule and showed it to consist of a hydroxy and carboxy substituted piperidine ring (C$_8$H$_9$O$_4$), a monosaccharide (C$_6$) sugar and long chain hydrocarbon (C$_{11}$) moiety. The COSY map afforded a comprehensive description of through-bond proton-proton connectivities. Corroborative evidence for the molecular structure thus derived was gleaned from the 13C-1H chemical shift correlation (HETCOR).

The broad-bond 13C NMR spectrum (pyridine-d$_5$, 50 MHz) of compound 1 showed a carboxylic carbonyl signal at δ 175.68 ppm. The IR spectrum also showed bands for carboxyl (C=O; 1630, COO-H; 2500-3500 cm$^{-1}$) and 2° amine (-NH-; 3320 cm$^{-1}$) functionalities.

In order to identify the sugar moiety, compound 1 was hydrolyzed with 10% H$_2$SO$_4$. The residue obtained showed the presence of D-glucose when compared with the authentic sample of this sugar on TLC.

The assigned 1H and 13C resonance for compound 1 is shown in Table 1. Comparisons of the spectral data in Table 1 with the published spectra of related alkaloids1-5,9-13 showed glucose to be a glucopyranosyl, and alkaloid a substituted piperidine type ring having hydroxy, carboxy and long chain hydrocarbon. The positive ion FAB mass spectrum (MNBA) of glycosidically linked piperidine type alkaloid exhibited prominent ions at m/z 493(5) [M]$^+$, 409(43) [M-85+H]$^+$, 295(100) [M-175-H$_2$O+H]$^+$, 2$^+$,55) [M-179-2H$_2$O-CO$_2$+H]$^+$ and 159(10) [M-179-side-chain(155)]$^+$ corresponding to C$_{23}$H$_{43}$NO$_{10}$ (Figure 1). The length of the side-chain was determined with the aid of 13C, APT NMR and FAB-MS spectra14.

Thus, we conclude that compound 1 has the structure 2-β-glycopyranosyl-2-undecyl-3,5-dihydroxy-6-carboxy piperidine, which is a novel natural product elucidate from the *Cyclamen coum*. The stereochemistry and synthesis of this compound is currently under investigation.

Acknowledgements

This study was supported by a grant from the Karadeniz Technical University of Türkiye. Thanks. go to TÜBİTAK for recording the NMR spectra and (+) FAB-MS spectrum and Dr. Mahir Küçük for collection and identification of sample.
A Novel Glycosidically Linked Piperidine Alkaloid From Cyclamen Coum, N. YAYLI & C. BALTACI

\[
\begin{align*}
&\text{OH} & \text{O} \\
&\text{HO} & \text{HO} \\
&\text{HO} & \text{O} \\
&\text{OH} & \\
&\text{OH} & \\
\end{align*}
\]

2-\(\beta\)-D-glucopyranosyl-2-undecyl-3,5-dihydroxy-6-carboxy piperidine, \(1\)

\[
\begin{align*}
&\text{OH} & \text{O} \\
&\text{HO} & \text{HO} \\
&\text{HO} & \text{O} \\
&\text{OH} & \\
&\text{OH} & \\
\end{align*}
\]

\(\text{C}_{23}\text{H}_{43}\text{NO}_{10}, \{\text{M}\}^+, 493(5)\)

Figure 1. FAB-MS (m/z) spectral analysis of compound 1.

References

