İnvers Gaz Kromatografisiyle Alkil Metakrilat Polimerlerinin Etkileşim ve Çözünürlük Parametrelerinin İncelenmesi

İsmet KAYA
Kahramanmaraş Sütçü İmam Üniversitesi,
Fen-Edebiyat Fakültesi, Kimya Bölümü,
Kahramanmaraş-TÜRKİYE
Eyüp ÖZDEMİR, Mehmet COŞKUN
Fırat Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü
Elazığ-TÜRKİYE

Geliş Tarihi 6.10.1995

PMMA, PEMA, PİBMA ve Pt-BMA’ın polimer çözünürlük (\(\delta_2\)) parametrelerini hesaplamak için alkanlar, asetatlar, ketonlar, aromatikler, THF ve metanol’un 413-443 K sıcaklıklarında invers gaz kromatografisiyle (i.g.c.) Flory-Huggins etkileşim parametreleri (\(\chi\)) ve karışımın kısmi molar serbest enerjisi (\(\Delta G^\circ_2\)) belirlendi. Ayrıca, prölün sonuz seyreltikteki kütlesel karşı aktifik katsayılari (\(a_1/W_1\))^\infty, 413-443 K’de hesaplandı.

Study of Interaction and Solubility Parameters of Alkyl Methacrylate Polymers by Inverse Gas Chromatography

Flory-Huggins interaction parameters (\(\chi\)) and partial molar free energies of mixing (\(\Delta G^\circ_1\)) have been determined by inverse gas chromatography (i.g.c.) at temperatures 413-443 K for alkanes, acetates, ketones, aromatics, THF and methanol to estimate the polymer solubility parameters (\(\delta_2\)) of PMMA, PEMA, PİBMA and Pt-BMA. Furthermore, weight fraction activity coefficients (\(a_1/w_1\))^\infty of probes were calculated at infinite dilution at 413-443 K.

Giriş

Polimerik maddelerin termodinamik özelliklerinin incelenmesinde invers gaz kromatografisi metodu (i.g.c) ilk defa 1969 yılında Smidsrod ve Guillet tarafından kullanılmıştır. Son yıllarda DiPaola-Baranyi ve Guillet sabit faz olarak bir polimer kullanarak polymelerin çözünürlük parametrelerini belirlemek için invers gaz kromatografisinin uygun ve basit bir metod olduğunu göstermişlerdir. Metodun esası, değişik küçük moleküllü problamın tutunma zamanları verilerinden faydalanarak polymelerin camda geçen sıcaklığı (Tg), erime sıcaklığı (Tm), sorpsiyonla ait entalpi (\(\Delta H^\circ_1\)) ve entropi (\(\Delta S^\circ_1\)), kütlesel aktiflik katsayısı (\(a_1/W_1\))^\infty karışının kısmi molar serbest enerjisi (\(\Delta G^\circ_1\))^\infty ve çözünürlük parametresi gibi termodinamik
özellikler belirlenebilir\(^3\). Burada prob olarak kullanılan küçük molekülerin spesifik alkonna hacim \(V_g^o\) değerleri aşağıdaki denklem yapılmışa hesaplanır\(^4\).

\[
V_g^o = \Delta t \frac{273.2 F}{T_{oda}} \frac{w^3}{2} \frac{P_i}{(P_i/P_0)^2 - 1/(P_i/P_0)^3 - 1}
\]
(1)
burada \(w\), kolon sabit fazındaki polimer gram miktarı, \(F\), taşıyıcı gazın oda sıcaklığında \(T_{oda}\) aks hızı (ml/dak.), \(P_i\) ve \(P_0\) sırasıyla taşıyıcı gazın kolona giriş ve çıkış basınçları (mm Hg), \(\Delta t\), net alkonna süresi olup probun alkonna süresinden \(t_p\), metan veya hava gibi kolonla pratikte etkileşmeyen bir maddenin alkonna süresi \(t_g\), çıkarlarak \((\Delta t = t_p - t_g)\) belirlenir\(^5\).

Bu çalışmada kullanılan farklı çözücülerin sonrıs seyreltikte (polimer-çözücü) Flory-Huggins ektileşim parametreleri \((\chi)\) aşağıdaki denklem yapılmışa belirlenir:

\[
\chi = \ln\left(\frac{273.2 R \nu_2}{V_g^o V_1 P_1^0} - 1 - \frac{P_1^0}{R T (B_{11} - V_1)}\right)
\]
(2)
burada \(R\) evrensel gaz sabiti, \(\nu_2\) polimerin spesifik hacmi (ml/g) \(V_1\) çözücüünün molar hacmi, \(P_1^0\) çözücüünün buhar basını ve \(B_{11}\) gaz haldeki çözücüünün ikinci ektileşim katsayısıdır.

Probların farklı sıcaklıkta buhar basını \(P_1^0\), Antoine denkleminde belirlenir.

\[
\log P_1^0 = A - B/(t + C)
\]
(3)
burada \(t\) sıcaklık \((^\circ C)\), \(A\), \(B\) ve \(C\) birer sabitler olup literatürden alınmıştır\(^6\). \(B_{11}\), probların ikinci ektileşim parametresi aşağıdaki bağıntı yapılmışa belirlenir\(^2\):

\[
B_{11}/V_c = 0.43 - 0.886 T_c/T - 0.694 (T_c/T)^2 - 0.0375 (n - 1)(T_c/T)^{4.5}
\]
(4)
burada \(T_c\) ve \(V_c\) proba ait kritik sıcaklık ve hacimidir. \(n\) ise prob karbon sayısı ifade eder.

Çözücülerin molar hacim \(V_1\) değerleri aşağıdaki denklemlerle hesaplanır\(^6\):

\[
0.2 \leq T_r \leq 0.8 \text{ için}
\]

\[
V_r^o = 0.33593 - 0.33953 T_r + 1.51941 T_r^2 - 2.02512 T_r^3 + 1.14227 T_r^4
\]
(5)

\[
0.8 < T_r < 1.0 \text{ için}
\]

\[
V_r^o = 1.0 + 1.3(1 - T_r)^{1/2}\log(1 - T_r) - 0.50879(1 - T_r) - 0.91534(1 - T_r)^2
\]
(6)

\[
0.2 < T_r < 1.0 \text{ için}
\]

\[
\Gamma = 0.29607 - 0.09045 T_r - 0.04842 T_r^2
\]
(7)

\[
V_1/V^R = V_r^o(T_r)[1 - w\Gamma(T_r)]/V_r^o(T_r)^2[1 - w\Gamma(T_r)^2]
\]
(8)
burada \(V_r^o\) ve \(\Gamma\) indirgenmiş sıcaklık fonksiyonları, \(w\), asentrik faktör, \(T_r\), indirgenmiş sıcaklık, \(V^R = M/d\), \(M\) ve \(d\) sırasıyla çözücüünün moleküler kütle ve yoğunluğu ve \(T_r\) ise indirgenmiş referans sıcakktır.
İvers Gaz Kromatografisiyle Alkil Metakrilat Polimerlerinin... İ. KAYA ve diğerleri.

Çözücü probların sonsuz seyretkekte kütle kesiri aktivite katsayları \((a_1/w_1)\) \(^\infty\) ve karşının kısmi molar serbest enerjisi \((\Delta G_1^\infty)\) değerleri aşağıdaki denklemler yardımıyla belirlenir:

\[
(a_1/w_1)\infty = \ln(273.2R/P_1^0V_g^0M_1) - P_1^0[(B_{11} - V_1)/RT]
\]

\[
\Delta G_1^\infty = RT \ln(a_1/w_1)^\infty
\]

(9) (10)

burada \(M_1\), çözücünün molekül kütlesi, \(a_1\), çözücü aktivitesi ve \(w_1\), çözeltideki çözücü kütle fraksyonudur.

Flory-Huggins parametresi \(\chi\) esas itibariyle değişik küçük molekülü probların sabit fazdaki polimerlerin üzerindeki tutunma zamanlarından faydalanarak çabucak belirlenebilir. Flory teorisiyle Hildebrand-Scatchard teorisi birleştirilerek \(\chi\) ile çözünürlük parametresi arasında bir ilişki kurulusa aşağıdaki (denk.11) gibi olur.

\[
\chi = V_1/RT(\delta_1 - \delta_2)^2
\]

(11)

Polimerlerin ve kullanılan probların çözünürlük parametresi \((\delta_2, \delta_1)\) değerleri de DiPaola-Baranyi ve Guillet\(^2\)'ın belirttiği gibi sırasıyla aşağıdaki bağıntılar yardımıyla belirlenir:

\[
(\delta_2^2/RT) - \chi/V_1 = (2\delta_2/RT)\delta_1 - \delta_2^2/RT
\]

\[
\delta_1^2 - (\Delta G_2^\infty /V_1) = (2\delta_2)\delta_1 - \delta_2^2
\]

\[
\delta_1 = (\Delta H_v - RT/V_1)^{1/2}
\]

(12) (13) (14)

burada \(\delta_1\) kullanılan probun \(\delta_2\) polimerin çözünürlük parametresidir. \(\Delta H_v\) probun kaynama notasındaki buhar basınç olup farklı sıcaklıklardaki değeri de Reid ve arkadaşlarının\(^6\) verdiği bağıntılar yardımıyla belirlenir.

Bu çalışmada i.g.c metodu kullanılarak; metanol, THF, aromatikler, asetatlar, ketonlar ve alkanlar ile poli (metil metakrilat)(PMMA), poli (etil metakrilat) (PEMA), poli (isobutil metakrilat) (PİBMA) ve poli (tert-butil metakrilat) (Pt-BMA)'ın Flory-Huggins etkileşim parametresi \(\chi\), ağrılıkça aktiflik katsayları \((a_1/w_1)\)\(^\infty\), karşının kısmi molar serbest enerjisi \((\Delta G_1^\infty)\) ve polimerlerin çözünürlük parametresi \((\delta_2)\) değerleri belirlendi.

Denel Bölüm

Materyal

Bu çalışmada polar ve non-polar olmak üzere üçü prob kullanıldı. Kimyasal yapı ve polaritesi farklı olan bir kaç grup seçildi. Seçilen prblardan metanol, aseton, metil asetat, etil asetat, etil metil keton, tetrahidrofurun, benzen ve o-silen kromatografik düzeyde olup Merck firmasından temin edildi. n-oktan, n-nonan, n-dekan, n-undekan ve n-dodekan da kromatografik düzeyde olup Aldrich Chemical Co. firmasından temin edildi. PMMA ağrılıkça ortalama moleküler kütlesi \(M_w\), (\(M_w=120.000, d=1,190 g/cm^3, n_D^{20}=1,4893\)), ve viskozite ortalama moleküler kütlesi \(M_e\), PEMA (\(M_e=215.000, d=1,110 g/cm^3, n_D^{20}=1,4850, a=0,79, K=0,00283 mlg^{-1}\)), PİBMA (\(M_v=155.000, d=1,090 g/cm^3, n_D^{20}=1,4770, a=0,79, K=0,00218 mlg^{-1}\)), Pt-BMA (\(M_v=75.000, d=1,022 g/cm^3, n_D^{20}=1,4638, a=0,63 K=0,0220 mlg^{-1}\) olarak belirlendi. Polimerler
toz halinde Aldrich Chemical Co. firmasından temin edildi. Chromosorb w (45-60 mesh) Sigma firmasından temin edildi.

Alet ve Kolonların Hazırlanması

Ölçümlerde GC 14A model Shimadzu gaz kromatografisi ve alev ıyonlaşmalar dedektör (FID) kullanıldı. Taşıyıcı gaz olarak sağı azot \((N_2)\) gazı kullanıldı. Kolon ölü hacmini belirlemek için kolona etkileşmeyen madde olarak metan gazı kullanıldı. Taşıyıcı gazın akış hızı bir sabun köpüğü flow metresiyle oda sıcaklığında 20 ml dak \(^{-1}\) olarak ölçülü. Kolon giriş ve çıkış basınçları bir cva manometresi yardımıyla ölçüldü. Metan gazı laboratuvarda sodyum asetatla sodyum hidroksit'in reaksiyonu sonucu elde edildi\(^7\).

Kolonlar metilenklorürle yıkanıp kurultulduktan sonra Tablo 1'de verildiği gibi dolduruldu. Polimerler uygun çözücülerde çözüldükten sonra çözeltinin üzerine destek katsısı olarak Chromosorb w (45-60 mesh) ilave edildi. Düşük basınçta evaparatorde çözücler uzaklaştırılduktan sonra 60°C'de vakum etüvünde iyice kurultuldu. Hazırlanan dolgu maddeleri bir vakum pompası yardımıyla 2,1 metre 3,2 mm iç çaplı spiral cam kolonlara dolduruldu. Kolonlar 80°C'de ve hızlı taşıyıcı gaz akış hızında 24 saat şartlandırıldı. Problar herbir scaklık için 0.3 \(\mu L\) hacminde 1 \(\mu L\)'lık bir Hamilton enjektorle enjekte edildi. Ölçümler Shimadzu CR 6A Chromatopac model integratörde kaydedildi.

Tablo 1. Sabit faz ve kolon oranları

<table>
<thead>
<tr>
<th>Kolon</th>
<th>Çözücü</th>
<th>Polimer dolgu orani (%/w/W)</th>
<th>Polimer kütesi (g)</th>
<th>Destek katsısı (g) uzunluğu (cm)</th>
<th>Kolon uzunluğu (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>Benzen</td>
<td>9,55</td>
<td>0,53600</td>
<td>6,15731</td>
<td>210</td>
</tr>
<tr>
<td>PEMA</td>
<td>N,N-Dimetilasetamid</td>
<td>10,00</td>
<td>0,60000</td>
<td>6,60000</td>
<td>210</td>
</tr>
<tr>
<td>PİBMA</td>
<td>N,N-Dimetilasetamid</td>
<td>10,00</td>
<td>0,58595</td>
<td>5,85948</td>
<td>210</td>
</tr>
<tr>
<td>Pt-BMA</td>
<td>N,N-Dimetilasetamid</td>
<td>7,43</td>
<td>0,43108</td>
<td>5,80108</td>
<td>210</td>
</tr>
</tbody>
</table>

Çalışmada kullanılan prablarnın çözünürlük parametreleri \(\delta_1\) (denk.14), buhar basınçları \(P_1^0\) (denk.3) ve molar hacim \(V_1\) (denk. 5,6,7,8) değerleri 413-443 K arasında hesaplandı ve Tablo 2'de verildi.

Tablo 2. 413-443 K arasında prablarnın çözünürlük parametreleri \(\delta_1\), buhar basınç \(P_1^0\) ve molar hacim, \(V_1\) değerleri

<table>
<thead>
<tr>
<th>Prob/T(K)</th>
<th>(\delta_1(\text{kal/cm}^3)^{1/2})</th>
<th>(P_1^0) (mm Hg)</th>
<th>(V_1) (cm³/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
<td>10.26</td>
<td>57.66</td>
<td>58.04</td>
</tr>
<tr>
<td>423</td>
<td>6.88</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>443</td>
<td>4.60</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>413</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
<tr>
<td>423</td>
<td>5.65</td>
<td>104.51</td>
<td>106.81</td>
</tr>
<tr>
<td>433</td>
<td>5.65</td>
<td>115.21</td>
<td>115.79</td>
</tr>
<tr>
<td>443</td>
<td>5.65</td>
<td>114.96</td>
<td>144.96</td>
</tr>
</tbody>
</table>

14
Sonuçlar ve Tartışma

Onuç çözücünün spesifik alkonma hacmi \(V_0^s\) dört farklı sıcaklıkta (413, 423, 433 ve 443 K) PMMA, PEMA, PİBMA VE Pt-BMA doldurulmuş kolonlar kullanılarak belirlendi. Probların (organik çözücü) spesifik hacim \(V_0^s\) değerleri denklem (1)’e göre hesaplan Tablo 3’de verildi. 1/T; \(\ln V_0^s\) grafikleri polimer-prob (organik çözücü) arası etkileşimler hakkında önemli bilgiler verir.

PMMA, PEMA, PİBMA ve Pt-BMA polimerlerinin camlı geçiş (Tg) sıcakları Diferansiyel Taramalı Kalorimetre (DSC) teknigiyle sırasyla 110, 70, 53 ve 111°C olarak bulundu. Camlı geçiş sıcaklığı altında polimer-prob arasında adsorpsiyon oluyor, üzerinde ise adsorpsiyona birlikte absorspsiyon oluyor da olmaktadır. Bu ikisini de içine alan sorpsiyon olayının da olduğu kabul edilmiştir.

PMMA, PEMA, PİBMA ve Pt-BMA’la hazırlanan kolonların 413-443 K sıcaklıkları arasında hesaplanan \(\chi\), \(a_{1/w_1}\) ve \((\Delta G^\infty_I)\) değerleri Tablo 4 ve 5’de verildi.

<table>
<thead>
<tr>
<th>Kolon</th>
<th>(T(K))</th>
<th>Metl.</th>
<th>Astn.</th>
<th>M. Ast.</th>
<th>E. Ast.</th>
<th>E. M. K.</th>
<th>THF</th>
<th>(V_0^s) (cm³/g)</th>
<th>Benz.</th>
<th>O-ksl.</th>
<th>n-Okt.</th>
<th>n-Non</th>
<th>n-Dek.</th>
<th>n-Undk.</th>
<th>n-Dodk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>413</td>
<td>6.20</td>
<td>6.33</td>
<td>6.46</td>
<td>6.83</td>
<td>7.62</td>
<td>6.81</td>
<td>9.00</td>
<td>17.46</td>
<td>8.01</td>
<td>8.73</td>
<td>13.03</td>
<td>16.74</td>
<td>14.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>5.78</td>
<td>5.64</td>
<td>5.86</td>
<td>6.55</td>
<td>6.98</td>
<td>7.64</td>
<td>9.18</td>
<td>15.10</td>
<td>7.09</td>
<td>7.46</td>
<td>9.80</td>
<td>13.04</td>
<td>12.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>443</td>
<td>5.22</td>
<td>5.64</td>
<td>5.99</td>
<td>5.90</td>
<td>6.41</td>
<td>7.13</td>
<td>8.83</td>
<td>13.52</td>
<td>6.64</td>
<td>6.43</td>
<td>9.20</td>
<td>11.92</td>
<td>11.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>3.80</td>
<td>4.36</td>
<td>4.28</td>
<td>5.45</td>
<td>6.00</td>
<td>6.28</td>
<td>7.92</td>
<td>21.83</td>
<td>6.20</td>
<td>9.30</td>
<td>14.27</td>
<td>22.67</td>
<td>34.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>3.55</td>
<td>3.98</td>
<td>3.83</td>
<td>4.68</td>
<td>5.23</td>
<td>5.48</td>
<td>7.34</td>
<td>15.91</td>
<td>5.39</td>
<td>7.68</td>
<td>11.57</td>
<td>17.71</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>443</td>
<td>3.35</td>
<td>3.75</td>
<td>3.72</td>
<td>4.33</td>
<td>4.76</td>
<td>5.03</td>
<td>6.45</td>
<td>13.20</td>
<td>4.93</td>
<td>6.74</td>
<td>9.02</td>
<td>14.18</td>
<td>21.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>3.99</td>
<td>4.49</td>
<td>4.55</td>
<td>5.28</td>
<td>5.58</td>
<td>4.12</td>
<td>5.17</td>
<td>18.31</td>
<td>7.54</td>
<td>10.79</td>
<td>16.51</td>
<td>26.04</td>
<td>42.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>443</td>
<td>3.56</td>
<td>3.97</td>
<td>4.04</td>
<td>4.42</td>
<td>4.64</td>
<td>3.51</td>
<td>4.34</td>
<td>11.97</td>
<td>5.78</td>
<td>7.72</td>
<td>10.78</td>
<td>15.74</td>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>Pt-BMA</td>
<td>413</td>
<td>3.89</td>
<td>3.44</td>
<td>3.43</td>
<td>3.49</td>
<td>3.49</td>
<td>3.80</td>
<td>3.99</td>
<td>5.13</td>
<td>3.60</td>
<td>4.97</td>
<td>4.27</td>
<td>5.04</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>423</td>
<td>3.02</td>
<td>3.52</td>
<td>3.44</td>
<td>3.54</td>
<td>3.52</td>
<td>3.57</td>
<td>3.82</td>
<td>5.03</td>
<td>3.86</td>
<td>4.89</td>
<td>5.76</td>
<td>4.75</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>3.07</td>
<td>3.68</td>
<td>3.62</td>
<td>3.62</td>
<td>3.65</td>
<td>3.81</td>
<td>3.86</td>
<td>3.95</td>
<td>3.68</td>
<td>4.78</td>
<td>4.07</td>
<td>5.11</td>
<td>6.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>443</td>
<td>3.92</td>
<td>3.80</td>
<td>3.69</td>
<td>3.71</td>
<td>3.78</td>
<td>3.75</td>
<td>4.14</td>
<td>3.95</td>
<td>3.75</td>
<td>4.89</td>
<td>3.94</td>
<td>5.16</td>
<td>5.52</td>
<td></td>
</tr>
</tbody>
</table>

Probların polimeri çözümlerini için Flory-Huggins etkileşim parametreleri \(\chi\) değerlerinin 0.5'den küçük olması gerekmektedir. PMMA için alkanlar, metanol ve o-küisen kötü çözücü; aseton, THF, metil asetat ve etil asetat iyi çözücü; benzen ve E.M.K. yüksek sıcaklıkta iyi çözücü; PEMA için alkanlar, aromatikler, ketonlar ve metanol kötü çözücü; asetalar ve THF yüksek sıcaklıkta iyi çözücü; PİBMA için alkanlar, aromatikler, ketonlar, metanol, THF ve etil asetat kötü çözücü; metil asetat yüksek sıcaklıkta iyi çözücü; Pt-BMA için alkanlar, aromatikler, ketonlar, metanol, THF ve etil asetat kötü çözücü; metil asetat yüksek sıcaklıkta iyi çözücü olarak bulundu.

Polimerlerin çözünürlük parametrelerinin belirlenmesi için; denklem (12) ve (13) yardımıyla hesaplanan değerlerin \(\delta_1\)’e karşı grafiği çizildi (Şekil 1,2). Bu doğruların eğim ve kayma değerlerinden polimerlerin çözünürlük parametresi \(\delta_2\) değerleri belirlendi. Doğruların hepsi için katsayılara 0.99 ile 1.00 arasında değiştiği gözlandı. Elde edilen sonuçlar Tablo 6’da verildi.
Tablo 4. PMMA ve PEMA kolonları için 413-443 arası Flory-Huggins etkileşim katsayları (χ), kütle kesri aktiflik katsayları ($a_1/w_1)^\infty$ ve karşırımın kısmi molar serbest enerji (ΔG_k$^\infty$) değerleri

<table>
<thead>
<tr>
<th></th>
<th>χ</th>
<th>($a_1/w_1)^\infty$</th>
<th>ΔG_k$^\infty$(kkal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prob/T(K)</td>
<td>413</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metanol</td>
<td>1.090</td>
<td>0.858</td>
<td>0.644</td>
</tr>
<tr>
<td>Aseton</td>
<td>0.584</td>
<td>0.366</td>
<td>0.254</td>
</tr>
<tr>
<td>Met.Ast.</td>
<td>0.320</td>
<td>0.136</td>
<td>-0.035</td>
</tr>
<tr>
<td>Etl.Ast.</td>
<td>0.648</td>
<td>0.452</td>
<td>0.261</td>
</tr>
<tr>
<td>E.M.K.</td>
<td>0.831</td>
<td>0.648</td>
<td>0.463</td>
</tr>
<tr>
<td>THF</td>
<td>0.585</td>
<td>0.206</td>
<td>0.053</td>
</tr>
<tr>
<td>Benzen</td>
<td>0.929</td>
<td>0.692</td>
<td>0.436</td>
</tr>
<tr>
<td>O-ksilen</td>
<td>1.395</td>
<td>1.188</td>
<td>1.001</td>
</tr>
<tr>
<td>n-Oktan</td>
<td>1.569</td>
<td>1.370</td>
<td>1.170</td>
</tr>
<tr>
<td>n-Nonan</td>
<td>2.074</td>
<td>1.822</td>
<td>1.668</td>
</tr>
<tr>
<td>n-Dekan</td>
<td>2.247</td>
<td>2.141</td>
<td>1.919</td>
</tr>
<tr>
<td>n-Undek.</td>
<td>2.564</td>
<td>2.447</td>
<td>2.327</td>
</tr>
<tr>
<td>n-Dodek.</td>
<td>3.244</td>
<td>2.958</td>
<td>2.676</td>
</tr>
</tbody>
</table>

Guillet herhangi bir probun polimer için çözücü olup olmadığını hakkında kütle kesri aktiflik katsayısı ($a_1/w_1)^\infty$ değerlerine göre aşağıdaki bağıntıları türemitir14.

\[
\begin{align*}
(a_1/w_1)^\infty &< 5 \quad \text{iyi çözücü} \\
5 < (a_1/w_1)^\infty &< 10 \quad \text{orta derecede çözücü} \\
(a_1/w_1)^\infty &> 10 \quad \text{kötü çözücü}
\end{align*}
\]

Tablo 4 ve 5’deki (413-443 K) ($a_1/w_1)^\infty$ sonuçlarına göre PMMA kolonu için alkanlar ve o-ksilen kötü çözücü; metil asetat ve THF yüksek sıcaklıkta iyi çözücü; etil asetat, benzen, metanol ve ketonlar orta derecede çözücü; PEMA kolonu için alkanlar ve metanol kötü çözücü; THF ketonlar, asetatlar ve aromatikler orta derecede çözücü; PIBMA kolonu için alkanlar, aromatikler, E.M.K. ve metanol kötü çözücü; asetatlar, aseton ve THF yüksek sıcaklıkta orta derecede çözücü; Pt-BMA kolonu için alkanlar, aromatikler ve metanol kötü çözücü; ketonlar, asetatlar ve THF yüksek sıcaklıkta orta derecede çözücülerdir.
İnvers Gaz Kromatografisiyle Alkil Metakrilat Polimerlerinin...; İ. KAYA ve diğerleri.

Tablo 5. PİBMA ve Pt-BMA kolon için 413-443 arasındaki Flory-Huggins etkileşim katayışları (χ), kütle kesri aktiflik katsayıları (a_1/w_1)\(_\infty\) ve karşımanın kısmi molar serbest enerjisi (ΔG^{∞}_1) değerleri

<table>
<thead>
<tr>
<th></th>
<th>χ</th>
<th>(a_1/w_1)(_\infty)</th>
<th>ΔG^{∞}_1(kkal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob/T(K)</td>
<td>413</td>
<td>423</td>
<td>433</td>
</tr>
<tr>
<td>Metanol</td>
<td>1.764</td>
<td>1.559</td>
<td>1.352</td>
</tr>
<tr>
<td>Aseton</td>
<td>1.081</td>
<td>0.946</td>
<td>0.794</td>
</tr>
<tr>
<td>Met.Ast.</td>
<td>0.840</td>
<td>0.703</td>
<td>0.537</td>
</tr>
<tr>
<td>Etl.Ast.</td>
<td>1.017</td>
<td>0.879</td>
<td>0.765</td>
</tr>
<tr>
<td>E.M.K.</td>
<td>1.208</td>
<td>1.100</td>
<td>1.005</td>
</tr>
<tr>
<td>THF</td>
<td>1.082</td>
<td>0.970</td>
<td>0.818</td>
</tr>
<tr>
<td>Benzen</td>
<td>1.434</td>
<td>1.325</td>
<td>1.183</td>
</tr>
<tr>
<td>O-ksilén</td>
<td>1.224</td>
<td>1.190</td>
<td>1.156</td>
</tr>
<tr>
<td>n-Oktan</td>
<td>1.669</td>
<td>1.585</td>
<td>1.453</td>
</tr>
<tr>
<td>n-Nonan</td>
<td>1.819</td>
<td>1.751</td>
<td>1.659</td>
</tr>
<tr>
<td>n-Dekan</td>
<td>1.903</td>
<td>1.851</td>
<td>1.791</td>
</tr>
<tr>
<td>n-Undek.</td>
<td>1.966</td>
<td>1.910</td>
<td>1.874</td>
</tr>
<tr>
<td>n-Dodek.</td>
<td>2.123</td>
<td>1.953</td>
<td>1.926</td>
</tr>
<tr>
<td>Metanol</td>
<td>1.710</td>
<td>1.434</td>
<td>1.172</td>
</tr>
<tr>
<td>Aseton</td>
<td>1.346</td>
<td>1.102</td>
<td>0.834</td>
</tr>
<tr>
<td>M.Ast.</td>
<td>1.106</td>
<td>0.881</td>
<td>0.610</td>
</tr>
<tr>
<td>E.Ast.</td>
<td>1.472</td>
<td>1.230</td>
<td>0.975</td>
</tr>
<tr>
<td>E.M.K.</td>
<td>1.764</td>
<td>1.530</td>
<td>1.264</td>
</tr>
<tr>
<td>THF</td>
<td>1.506</td>
<td>1.178</td>
<td>0.901</td>
</tr>
<tr>
<td>Benzen</td>
<td>1.895</td>
<td>1.692</td>
<td>1.455</td>
</tr>
<tr>
<td>O-ksilén</td>
<td>2.772</td>
<td>2.513</td>
<td>2.495</td>
</tr>
<tr>
<td>n-Oktan</td>
<td>2.521</td>
<td>2.187</td>
<td>1.978</td>
</tr>
<tr>
<td>n-Nonan</td>
<td>2.790</td>
<td>2.495</td>
<td>2.500</td>
</tr>
<tr>
<td>n-Dekan</td>
<td>3.515</td>
<td>2.956</td>
<td>2.908</td>
</tr>
<tr>
<td>n-Undek.</td>
<td>3.911</td>
<td>3.640</td>
<td>3.250</td>
</tr>
<tr>
<td>n.Dodek.</td>
<td>4.000</td>
<td>3.761</td>
<td>3.553</td>
</tr>
</tbody>
</table>

Chen ve Al-Saigh 175-195°C sıcaklıklar arasında n-alkanlarla (nC\(_7\) - nC\(_{12}\))-PEMA'ın Flory-Huggins etkileşim katsayıları (χ), ağırlıkta aktiflik kütle fraksiyon aktignite katsayıları (a_1/w_1)\(_\infty\) ve karşımanın kısmi molar serbest enerjisi (ΔG^{∞}_1) değerlerini hesaplamışlar ve n-alkanlar için (χ) değerlerinin genel olarak sıcaklık arttıkça düşüğünü gözlemişlerdir. Ayrıca n-alkanların PEMA için kötü çözücü olduğunu belirtmişlerdir. Benzer sonuçlar (a_1/w_1)\(_\infty\) değerleriyle de bulunmuştur\(^{15}\). PEMA-n-alkanlar için bizim bulduğumuz değerlerde de n-alkanların PEMA için kötü çözücü olduğunu gözlemli.
İnvers Gaz Kromatografisyle Alkil Metakrilat Polimerlerinin... I. KAYA ve diğerleri.

Şekil 1. 443 K'de δ_1'e karşı $[(\delta_1^2/RT) - \chi/V_1]$ değerlerinin değişimi

$25^\circ C$'deki δ_2 değerleri PMMA 9.30 (kal cm$^{-3}$)$^{1/2}$, PEMA 8.95 (kal cm$^{-3}$)$^{1/2}$, PİBMA 8.65 (kal cm$^{-3}$)$^{1/2}$ ve Pt-BMA 8.65 (kal cm$^{-3}$)$^{1/2}$ olarak verilmiştir16. 413-443 K arasında metanol, aseton, benzen, etil asetat ve n-oktan prablarnın bulunan χ değerleri $\chi = \alpha + \beta/T$ denklemine göre lineer ekstrapolasıonda17 PMMA VE PİBMA için $25^\circ C$'deki çözünürlük parametresi δ_2 değerleri hesaplandı. Daha sonra $25^\circ C$ için $[(\delta_1^2/RT) - \chi/V_1]$'e karşı δ_1 grafiği çizildi. Her iki polimer için $25^\circ C$'deki çözünürlük parametresi

16.
17.
İvers Gaz Kromatografisiyle Alkil Metakrilat Polimerlerinin...; İ. KAYA ve diğerleri.

degerleri egrim ve kaymadan ayri ayri hesaplandi. PMMA ve PİBMA için cozunurlik parametresi \(\delta_2 \) egrim ve kaymadan srasıyla 8,94; 9,12 7,60; 7,70 (kal cm\(^{-3}\))\(^{1/2} \) olarak bulundu. Egrim ve kaymadan hesaplanan degerler birbiriyle oldukça uyumlu bulundu. PMMA için literatür verisi 9,30 (kal cm\(^{-3}\))\(^{1/2} \) olup bu degerle uyusum oldukça iyiyd. Ancak PİBMA için literatür degeri olan 8,65 (kal cm\(^{-3}\))\(^{1/2} \) degerinden oldukça düşük degerler bulunmustur. Ekstrapolasyonun PİBMA için çok güvenilir bir sonuc vermediği görülmaktedir.

Tablo 6. PMMA, PEMA, PİBMA ve Pt-BMA’nın 443 K’de cozunurlik parametresi \(\delta_2 \) degerleri

<table>
<thead>
<tr>
<th>Kolan</th>
<th>Egrim</th>
<th>Kayma</th>
<th>Egrimden</th>
<th>Kaymadan</th>
<th>Egrim</th>
<th>Kayma</th>
<th>Egrimden</th>
<th>Kaymadan</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA</td>
<td>0,0153</td>
<td>-0,0540</td>
<td>6,73</td>
<td>6,89</td>
<td>9,2395</td>
<td>-30,6052</td>
<td>4,62</td>
<td>5,53</td>
</tr>
<tr>
<td>PEMA</td>
<td>0,0132</td>
<td>-0,0435</td>
<td>5,81</td>
<td>6,19</td>
<td>7,8207</td>
<td>-23,3831</td>
<td>3,91</td>
<td>4,84</td>
</tr>
<tr>
<td>PİBMA</td>
<td>0,0133</td>
<td>-0,0435</td>
<td>5,85</td>
<td>6,19</td>
<td>7,9189</td>
<td>-23,6539</td>
<td>3,96</td>
<td>4,86</td>
</tr>
<tr>
<td>Pt-BMA</td>
<td>0,0140</td>
<td>-0,0502</td>
<td>6,16</td>
<td>6,65</td>
<td>8,5159</td>
<td>-29,1205</td>
<td>4,26</td>
<td>5,40</td>
</tr>
</tbody>
</table>

Scaklıkın arıtmasıyla cozunurlik parametrelerindeki azalma, polimerler ve problar için genel bir egilimdir. \(^2\)\(^1\) Bu scaklıkın arıtmasıyla \(\delta_1 = (\Delta H_v/V)^{1/2} \) cozunurlik parametresinin tanımında bulunan \(\Delta H_v \) buharlaşma isssının scaklıkla azalmasından ileri gelmektedir.

Kaynaklar