The role of diazacrown ether in the enhancement of the biological activity of silver nanoparticles

Sarvinaz HAJIYEVA1,*; Ulviyya HASANOVA1; Zarema GAKHRAMANOVA2; Aygun ISRAYILOVA3; Khudaverdi GANBAROV3; Eldar GASIMOV4; Fuad RZAYEV4; Goncha EYVAZOA5; Alakbar HUSEYNZADA1; Gunel ALIEVA6; Ilaha HASANOVA6; Abel MAHARRAMOV1

1Department of Organic Chemistry, Faculty of Chemistry, Baku State University, Baku, Azerbaijan
2Chemical Sensors and Reagents Laboratory, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
3Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
4Electron Microscopy Laboratory, Azerbaijan Medical University, Baku, Azerbaijan
5Nanoresearch Center, Baku State University, Baku, Azerbaijan
6Metal Complex Catalysts Laboratory, Faculty of Chemistry, Baku State University, Baku, Azerbaijan

Received: 06.07.2019 • Accepted/Published Online: 25.11.2019 • Final Version: 09.12.2019

Abstract: The nanostructuring of hydroxyl-substituted diazacrown-ether (DC) by silver nanoparticles was obtained by green synthesis method in order to increase the antibacterial activity of silver nanoparticles. The synthesized DC, nanoparticles, and nanosupramolecular complex (Ag@DC) were studied by TEM, powder-XRD, and NMR, IR, and UV spectroscopy methods. The Ag@DC nanostructures were uniform and their sizes ranged from 8 to 18 nm. IR and UV spectra revealed the noncovalent formation of the nanosupramolecular complex. The antibacterial activities of the prepared active agents were investigated on gram-positive and gram-negative bacteria by twofold microdilution method. Ultrastructural study by TEM was performed on E. coli BDU12 after treatment with Ag@DC. The results showed the improvement of the antibacterial action of Ag@DC compared to silver nanoparticles (E. coli BDU12 – 32 times, A. baumannii BDU32 – 16 times, K. pneumoniae BDU44 and P. aeruginosa BDU49 – 4 times, S. aureus BDU23 – 512 times). Chelating by DC significantly improved the antibacterial effects of the silver nanoparticles on gram-positive and gram-negative bacteria due to the ionophoric behavior of the crown ethers.

Key words: Silver nanoparticles, diazacrown ether, transmission electron microscopy, ultrastructural microscopy, antibacterial activity

1. Introduction

Silver nanoparticles have already found applications in different areas of study due to their unique features, such as optical, electrical, antibacterial, and thermal properties [1–4]. There are different methods for obtaining silver nanoparticles, based on chemical reduction, biochemical processes in plants and bacteria, and ecofriendly methods [5,6]. Their use as water-treatment agents and in membrane filtration processes also draws the scientific world’s attention because of the wide-spectrum antimicrobial activity of silver nanoparticles, their cost-effectiveness, and the low chance of toxic byproduct formation in comparison with traditional chemical water-treatment agents [7–9]. Medical applications of zero-valent silver nanoparticles include biosensors, biological tags, disinfectants, and antibacterial coatings for various medical instruments, catheters, and devices [10–16].

*Correspondence: sarvinazhajiyeva@gmail.com
However, despite the wide-ranging benefits of using silver nanoparticles, there are also limitations in their medical applications [17]. There are still insufficient data on the safety of zero-valent silver nanoparticles for human use because the mechanisms of their action have not been thoroughly investigated. There are studies that show the toxicity of silver NPs not only on pathogenic cells but also on human cells, connected with the transition of Ag\(^0\) ions to Ag\(^+\). Some researchers supposed that this problem could be solved by applying different coating materials (surfactants) or chelators [18,19].

Diazacrown ethers, as representatives of supramolecular compounds, are also promising antibacterial active substances because of their ionophoric features. Crown ethers can act as chelating agents and influence the properties of nanoparticles by chelating them, therefore making it possible to minimize the toxic and adverse effects of silver nanoparticles [20,21].

Considering all of these points, it was interesting to perform the chelation of silver nanoparticles by diazacrown-ether (DC) and compare their biological activity with that of pure silver nanoparticles and pure diazacrown-ether (DC).

2. Materials and methods

2.1. Fourier transform infrared (FTIR) spectroscopy

FTIR spectra of Ag@DC NPs were recorded on a Varian 3600 FTIR spectrophotometer in KBr tablets. The spectra were taken in the range of 4000–400 cm\(^{-1}\) at room temperature.

2.2. Ultraviolet-visible (UV-Vis) spectroscopy

The UV-spectra were recorded on a Varian Cary 50 UV-Vis spectrophotometer. UV spectra were recorded in the range of 220–400 nm of both ethanol solutions of DC and Ag@DC nanostructures.

2.3. Powder X-ray diffraction (XRD) analysis

XRD study was performed on a Rigaku Mini Flex 600 XRD diffractometer under ambient conditions. CuK\(\alpha\) radiation from a Cu X-ray tube (15 mA; 30 kV) was used. The samples were scanned in the Bragg angle 2 theta range of 30\(^\circ\) to 80\(^\circ\).

2.4. Synthesis of 7,8,14,15,16,17,18,19-octahydro-6H-dibenzo[f,n][1,5,9,12]dioxadiazacyclopentadecin-7-ol (diazacrown ether or DC)

The synthesis of diazacrown was performed according to the procedure described by Hasanova et al. [20]. Yield of the product was 65%, mp 148–149 °C. Found: C 69.5, H 7.4, N 8.7%. Calculated for C\(_{19}\)H\(_{24}\)N\(_2\)O\(_3\): C 69.5, H 7.4, N 8.5%. IR (KBr): 3350 (OH); 3330, 1455 (NH); 1604, 1590, 1492 (Ar); 1255, 1035 (Ar-O-CH\(_2\)); 754 (1,2-Ar) cm\(^{-1}\). \(^1\)H NMR (d): 2.64 (s, 4H, NCH\(_2\)CH\(_2\)N), 3.24 (br, 3H, NH and OH), 3.65 (s, 4H, ArCH\(_2\)), 4.14 (m, 5H, CH\(_2\)CHCH\(_2\)), 6.74–7.25 (m, 8H, ArH) ppm.

2.5. Synthesis of silver nanoparticles and nanosupramolecular ensemble Ag@DC

Ecofriendly and safe Ag\(^0\) nanoparticles were obtained by a green synthesis method using starch [22]. To 30 mg of AgNO\(_3\) was added 25 mg of starch, dissolved in 50 mL of distilled water. After that, 25% ammonia was added until the pH reached 11. The resulting solution was sonicated for 1 h with in an ice bath. Obtained
nanoparticles were dried at ambient temperature. From the powder was prepared a solution in distilled water, to which the diazacrown-ether was added at a ratio of 2:1 with further ultrasonication for 15 min. Samples were investigated by FTIR, XRD, and TEM and their antibacterial activities were compared.

2.6. Transmission electron microscopy (TEM)

The TEM analysis of compounds and biological samples was performed on a TEM JEOL-1400.

2.7. Antibacterial studies

The antimicrobial activity of the Ag@DC ensemble was tested against bacterial strains (*Acinetobacter baumanii* BDU32, *Escherichia coli* BDU12, *Klebsiella pneumoniae* BDU44, *Pseudomonas aeruginosa* BDU49, and *Staphylococcus aureus* BDU23) by the twofold microdilution method (96-well microtiter assay). The bacterial strains were taken from the culture collection of the Department of Microbiology (Baku State University, Azerbaijan). In this assay, we used U-bottomed 96-well microtiter plates. The inoculum was prepared from a fresh colony on Muller Hinton medium (“Liofilchem”) and bacterial strains (1 × 10^5 CFU) were inoculated into each well of the microplate, which contained active agents at different concentrations ranging from 256 to 2 μg mL⁻¹ for Ag and DC and 8 to 0.0625 μg mL⁻¹ for Ag@DC. The Ag⁰ nanoparticles and Ag@DC were dissolved in distilled water and sonicated for 15 min (20 kHz, ampicity power 87%, 500 W). The DC sample was dissolved in distilled water without further sonication. The growth was determined by the resazurin method after 24 h of incubation at 37 °C; 30 μL of resazurin solution (0.01%; Sigma Aldrich) was added to each well and the microplates were reincubated at 37 °C for about 4 h. If the color change from blue to pink, it indicated the growth of bacteria, and the minimum inhibitory concentration (MIC) was determined as the lowest concentration of the active agents that prevented this change in color [23,24].

2.8. Preparation of microbiological samples for TEM study

The influence of Ag⁰ nanoparticles and the Ag@DC ensemble on the ultrastructural changes of *E. coli* BDU12 was investigated by TEM. *E. coli* BDU12 cells treated with 0.5 Ag@DC (0.5 μg mL⁻¹ Ag : 0.25 μg mL⁻¹ DC) and 0.25 Ag@DC (0.25 μg mL⁻¹ Ag : 0.125 μg mL⁻¹ DC) and untreated control *E. coli* BDU12 were incubated in a shaker (150 rpm) for 24 h at 37 °C. After that incubation, samples were centrifuged at 4500 rpm for 10 min. The resulting pellets were fixed in phosphate buffer solution (pH 7.4) containing 2% paraformaldehyde, 2% glutaraldehyde, and 0.1% picric acid. After postfixation procedures in 1% osmic acid solution for 1.5 h, Araldite-Epon blocks were prepared according to the generally accepted methods in electron microscopy [25]. Semithin sections (1–2 μm) were obtained with a Leica EM UC7 ultramicrotome for further investigation by light microscope (Primo Star, Zeiss) and photographed with a digital camera (Canon D650). Unstained ultrathin sections (50–60 nm) were examined under the JEM-1400 TEM at 80–120 kV. Morphometric analysis of the images (electronograms) was carried out in TIF format via a computer program (TEM Imaging Platform) developed by Olympus Soft Imaging Solutions GmbH (Germany).

3. Results

Synthesis of diazacrown ether was performed as shown in the Scheme. In the first stage of the synthesis, the condensation reaction of salicylaldehyde (1) was conducted with 1,2-ethylenediamine (2) in order to obtain the
product N, N-ethylenebis(salicylimine) (3). The reduction of 3 was followed by the ring closure reaction of 4 with 1,3-dichloro-2-propanol, resulting in formation of the final product (5).

Scheme. The synthesis of 7,8,14,15,16,17,18,19-octahydro-6H-dibenzo[f,n]dioxadiazacyclopentadecin-7-ol (diazacrown ether or DC).

The purity and crystalline properties of the Ag0 nanoparticles were determined by powder XRD. The XRD patterns are shown in Figure 1. All the XRD peaks were well defined and corresponded to Ag0 nanoparticles with face-centered cubic structures. The peak broadening in the XRD pattern shows the formation of nanocrystals. In the pattern all lines relate to silver nanoparticles. The pattern has characteristic peaks at 38.330 (111), 44.480 (200), 64.610 (220), and 77.310 (311) (Table 1) and that correlates well with the standard pattern of silver nanoparticles. The intensity of the diffraction peak of the (111) plane is stronger than the other peaks. The average crystallite size, estimated from the (111) peak using the Williamson–Hall method, is 18.94 Å.

Figure 1. XRD pattern for the nanostructured Ag0 NPs.

Figure 2 presents the FTIR spectra of DC (a), Ag@DC (b), and Ag0 nanoparticles (c). The spectrum of starch-reduced Ag0 nanoparticles (c) reveals the characteristic peak at about 3338–3500 cm-1 (–OH stretching).
The spectrum of prepared nanostructures was compared with the spectrum of DC in order to determine the coordination sites of DC that may be involved in chelation with the surface of silver nanoparticles. In the spectrum of the prepared nanostructures the weakening of the intensity of a strong band at 1640 cm\(^{-1}\) is seen, corresponding to the secondary NH groups in the DC molecule, and shifts to 1655 cm\(^{-1}\). At the same time, the attenuation of an intensive wide band at 3100–3600 cm\(^{-1}\) and the shifting of a band at 1107 cm\(^{-1}\), corresponding to the –OH group of secondary alcohol in the DC molecule, to 1121 cm\(^{-1}\) in the spectrum, corresponding to nanostructures, are strong evidence of the coordination of DC molecules with silver nanoparticles via OH and NH groups of DC. The band at 1247 cm\(^{-1}\) of the cyclic ether group of DC to 1240 cm\(^{-1}\) in the spectra of Ag@DC also confirms the chelation between Ag\(^0\) nanoparticles and DC via noncovalent interaction.

The antibacterial activity of the synthesized active agents was studied against *Acinetobacter baumanii* BDU32, *Escherichia coli* BDU12, *Klebsiella pneumoniae* BDU44, *Pseudomonas aeruginosa* BDU49, and

Table 1. XRD Peak list for Ag\(^0\) NPs.

<table>
<thead>
<tr>
<th>No.</th>
<th>2-theta (deg)</th>
<th>d (ang)</th>
<th>Height (cps)</th>
<th>FWHM (deg)</th>
<th>Int. I (cps deg)</th>
<th>Int. W (deg)</th>
<th>Asym. factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.333(17)</td>
<td>2.3462(10)</td>
<td>11687(140)</td>
<td>0.71(2)</td>
<td>13606(134)</td>
<td>1.16(3)</td>
<td>0.97(10)</td>
</tr>
<tr>
<td>2</td>
<td>44.48(4)</td>
<td>2.0351(18)</td>
<td>3139(72)</td>
<td>1.18(5)</td>
<td>6045(123)</td>
<td>1.93(8)</td>
<td>1.3(2)</td>
</tr>
<tr>
<td>3</td>
<td>64.61(10)</td>
<td>1.4413(19)</td>
<td>1620(52)</td>
<td>1.05(8)</td>
<td>1820(170)</td>
<td>1.12(14)</td>
<td>1.0(4)</td>
</tr>
<tr>
<td>4</td>
<td>77.31(4)</td>
<td>1.2332(5)</td>
<td>2284(62)</td>
<td>1.27(15)</td>
<td>5086(263)</td>
<td>2.23(18)</td>
<td>0.32(12)</td>
</tr>
</tbody>
</table>
Staphylococcus aureus BDU23 by 96-well microtiter assay. As shown in Table 2, the nanosupramolecular ensemble Ag@DC demonstrated greater antibacterial activity as compared with pure diazacrown-ether (DC) and Ag⁰ nanoparticles. Ag@DC showed high activity at the concentration of 2 μg mL⁻¹. In this case, we need to decrease the concentration from 8 to 0.0625 μg mL⁻¹ for determining the MIC of this agent. The MIC of Ag@DC against both *E. coli* BDU12 and *S. aureus* BDU23 was 0.125 μg mL⁻¹, whereas the antibacterial effect
was significantly weaker in the case of Ag0 nanoparticles (4; 64 μg mL$^{-1}$) and DC (64; 128 μg mL$^{-1}$). *E. coli* BDU12 and *S. aureus* BDU23 were more susceptible to Ag@DC than other strains. Ag@DC showed equal effect on *A. baumannii* BDU32, *K. pneumoniae* BDU44, and *P. aeruginosa* BDU49 (2 μg mL$^{-1}$). However, the MIC of Ag nanoparticles for *A. baumannii* BDU32 was 16 times higher and equal to 32 μg mL$^{-1}$. In the case of *K. pneumoniae* BDU44 and *P. aeruginosa* BDU49, the difference between the MICs of zero-valent silver nanoparticles and Ag@DC was not so impressive, because the MIC of the Ag0 nanoparticles for both strains was equal to 8 μg mL$^{-1}$. *E. coli*, *K. pneumoniae*, and *P. aeruginosa* showed higher sensitivity toward Ag0 nanoparticles in comparison with *A. baumannii* BDU32 and *S. aureus* BDU23. The inhibition activity of DC on *K. pneumoniae* BDU44 and *P. aeruginosa* BDU49 was 128 μg mL$^{-1}$ and against *A. baumannii* BDU44 was 64 μg mL$^{-1}$. High sensitivity among the bacterial strains was not observed toward DC.

Table 2. Minimum inhibitory concentration (MIC) of tested compounds (μg mL$^{-1}$).

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Ag@DC</th>
<th>Ag DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter baumannii BDU32</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Escherichia coli BDU12</td>
<td>0.125</td>
<td>4</td>
</tr>
<tr>
<td>Klebsiella pneumoniae BDU44</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa BDU49</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Staphylococcus aureus BDU23</td>
<td>0.125</td>
<td>64</td>
</tr>
</tbody>
</table>

In order to determine the passage and distribution mechanism of Ag@DC, TEM of *Escherichia coli* BDU12 was performed without and after treatment with active agents. The control untreated cells of *E. coli* BDU12 are shown in Figure 6. In Figure 7 slight ultrastructural changes are shown, caused by nanostructures. Ag@DC was located mostly inside the cells. In Figure 8 it is shown that the ultrastructure of bacterial cells was strongly affected by the nanosupramolecular ensemble. As can be seen from this image, the disruption of the cells starts from inside the bacteria, where the nanostructures are mainly concentrated. There is no observed fragmentation of the cell wall of *E. coli* BDU12. In Figure 9 a ghost-cell of *E. coli* BDU12 is demonstrated without inner content. In this case, nanostructures are located in the deformed cell wall.

4. Discussion

According to these results, we can assume that Ag@DC is more effective than Ag0 and DC against bacterial strains. The results of microbiological studies allow us to assume that the application of diazacrown ether as a chelating agent potentiates the antibacterial effects of silver nanoparticles on gram-positive and gram-negative bacteria. The synergistic effect of Ag@DC nanostructures can be explained by the ionophoric behavior of crown-ethers. Due to their ability to integrate inside the bacterial cell membrane, metal nanoparticles can pass through them inside the cell as if through a sieve.

As a result of the TEM study, it can be assumed that Ag@DC nanostructures perform their action after passing through the cell walls of the bacteria. The enormous difference of 32 times between MICs of Ag0 nanoparticles and the Ag@DC nanosupramolecular ensemble is explained by the facilitated penetration of silver nanoparticles. A very interesting fact is that nanostructures are abundant inside the cells, indicating that silver nanoparticles in the ensemble are not oxidized to Ag$^+$ promptly after entering the bacteria. The TEM study of ultrastructural changes of treated *E. coli* BDU12, used as a representative of gram-negative bacteria, also shed
Figure 6. TEM image of *E. coli* BDU12 without treatment with Ag@DC.

Figure 7. a) Slightly damaged *E. coli* BDU12 cells with Ag@DC nanostructures inside the cells; b) size distribution graph of Ag@DC inside the cell.

Figure 8. a) Severely damaged *E. coli* BDU12 cells with Ag@DC nanostructures inside the cells; b) size distribution graph of Ag@DC inside the cell.
light on the possible explanation of the higher effectiveness of Ag@DC nanostructures than Ag0 nanoparticles toward other gram-negative bacteria.

The creation of new active agents on the basis of combining nanotechnology and supramolecular chemical approaches can help to overcome several problems in antimicrobial treatment. Our research shows that it is possible to significantly minimize (from 512 to 4 times in different strains) MICs of silver nanoparticles using the synergistic effect between them and diazacrown ether, which plays the role of a chelating agent. Thus, by chelating silver nanoparticles with a proper agent we can also decrease the therapeutic dose, and in this way reduce their toxicity and adverse effects.

Authors’ contributions

References

