A convenient route for the synthesis of new thiadiazoles

Abdelwahed SAYED1,2,*, Yasser ZAKI2, Emad AISH1,3
1Department of Chemistry, Faculty of Science, King Faisal University, Hofuf, Saudi Arabia
2Department of Chemistry, Faculty of Science, University of Beni Suef, Egypt
3Department of Chemistry, Faculty of Science, Menoufiya University, Egypt

Received: 07.05.2015 ● Accepted/Published Online: 01.09.2015 ● Final Version: 05.01.2016

Abstract: The present work describes the preparation of new thiadiazoles through a simple intramolecular reaction of mono- and bis-hydrazonoyl halides with methyl hydrogen phenyl carbonimidodithioate or methyl-2-arylidene hydrazinecarbodithioate. The synthetic method involves nucleophilic substitution followed by intramolecular cyclization reactions mediated by evolution of methanethiol. The structures of the title compounds were elucidated by elemental analyses, and FTIR, MS and NMR spectra.

Key words: Hydrazonoyl, thiadiazoles, dithioate

1. Introduction

Heterocyclic compounds show interesting biological activities.1 Thiadiazoles are important in the drug industry because they have antitumor,2 antihistamine,3 hypoglycemic,4 and anticholinergic activity.5 Thiadiazoles are also biologically active due to the aromaticity of the ring and are used in the treatment of epilepsy.6,7 They were reported as anti-inflammatory,8 antimicrobial,9 and anticonvulsant10 agents. We previously reported the synthesis of thiadiazoles via reaction of hydrazonoyl halides with carbonothioic dihydrazide or methyl carbodithioate or potassium thiocyanate.11–13

The aim of the present work was the synthesis and characterization of new thiadiazoles based on a simple base-catalyzed cyclization reaction of mono- or bis-hydrazonoyl halides with methyl hydrogen phenyl carbonimidodithioate or methyl-2-arylidene hydrazinecarbodithioate.

2. Results and discussion

The nucleophilic substitution reaction of bis-hydrazonoyl dichlorides (2–4) with methyl hydrogen phenyl carbonimidodithioate (1) in dioxane in the presence of triethylamine under reflux gave the corresponding thiadiazoles products (8–10). The reaction of bis-hydrazonoyl dichlorides (2–4) with the methyl-N-phenylethanimidodithioate (1) afforded the acyclic thiohydrazonate (5–7) by the attack of hydrazone-NH to iminic C=N followed by elimination of methanethiol to give the final compounds (8–10) as depicted in Scheme 1. The mass spectra of the products (8–10) revealed in each case a molecular ion peak in agreement with the molecular formula for each product. The IR spectra of the products showed no absorption bands at 3500–3100 cm⁻¹, which are characteristic of NH groups. Moreover, the 1H NMR spectrum for 8–10 indicated the absence of signals attributed

*Correspondence: arsayed@kfu.edu.sa
to S-methyl and NH protons. The 1H NMR spectrum for compound 10 revealed signals at 7.06–8.26 (m, 24H, ArH) ppm.

Scheme 1. Synthesis of thiadiazoles 8–10.

Hydrazonoyl chlorides were used in the synthesis of thiadiazole derivatives. These principles were extended in the present work; thus, methyl-2-arylidene hydrazine-carbodithioate (12) was reacted with hydrazonoyl chloride (3) or 11 in dioxane and in the presence of triethylamine by heating until complete elimination
of methanethiol gas. The reaction mixture gave a single product in each case (15 or 16). The formation of the final products was explained by a nucleophilic substitution reaction to give intermediate 13 or 14, which was then followed by elimination of methanethiol in order to give the final products (15 or 16). The final products were elucidated on the basis of spectral data and elemental analysis (Scheme 2). The IR spectrum of 15 or 16 showed no absorption bands for a NH group around 3500–3100 cm\(^{-1}\). Furthermore, the \(^1\)H NMR spectrum for 15 or 16 showed no signals attributed to NH protons (Scheme 2). The mass spectra of the products revealed in each case a molecular ion peak in agreement with the molecular formula of each compound.

\[\text{Scheme 2. Synthesis of thiadiazoles 15 and 16.}\]

3. Experimental

Melting points were determined on an electrothermal apparatus. IR spectra were recorded using KBr discs on a Shimadzu FT-IR 8201 PC spectrophotometer. \(^1\)H NMR spectra were recorded in CDCl\(_3\) and (CD\(_3\))\(_2\)SO solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts are expressed in \(\delta\) units using TMS as an internal reference. Mass spectra were recorded on a GC-MS QP 1000 EX Shimadzu. Elemental analyses were carried out at the Microanalytical Center of Cairo University.

The starting reagents 1, 14, 2, 13, 4, 15, 12, 16 and 11 were prepared as previously described.

3.1. Synthesis of bis-thiadiazoles (8–10)

A mixture of bis-hydrazonoyl dichlorides (2–4) (5 mmol) and methyl hydrogen phenylcarbonimidodithioate (1) (1.83 g, 10 mmol) was refluxed in dioxane (20 mL) and in the presence of triethylamine (1.1 g, 1.390 mL, 10 mmol) until elimination of all methanethiol gas (8–10 h) and then cooled. The cold reaction mixture was then
poured onto a cold ice–hydrochloric acid mixture with stirring. The solid that precipitated out was collected, washed with water several times, dried, and then recrystallized from DMF/EtOH to give the final products (8–10).

3.1.1. 1,1’-((5,5’)-4,4’-(sulfonylbis(4,1-phenylene))bis(5-phenylimino)4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (8)

Brown solid; Yield (70%) mp. 300 °C. IR (KBr): ν\text{max} 3062 (CH aromatic), 1697 (C=O) cm\(^{-1}\); 1H NMR (DMSO-\textit{d}_6): 2.49 (s, 6H, 213CH\textsubscript{3}) and 7.42–7.92 (m, 18H, ArH) ppm; 13C NMR (DMSO-\textit{d}_6): 25.41, 115.18, 125.18, 127.35, 128.89, 131.11, 134.46, 143.41, 146.39, 149.01, 158.01, and 188.42; MS m/z (%) = 652 (M\(^+\), 29); Anal. Calcd for C\textsubscript{32}H\textsubscript{24}N\textsubscript{6}O\textsubscript{4}S\textsubscript{3} (652.77): C, 58.88; H, 3.71; N, 12.87; Found: C, 58.89; H, 3.68; N, 12.85%.

3.1.2. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-(phenylimino-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (9)

Red brown solid; Yield (55%); mp. 300 °C. IR (KBr): ν\text{max} 3055 (CH aromatic), 1681 (C=O) cm\(^{-1}\); 1H NMR (DMSO-\textit{d}_6): 2.51 (s, 6H, 213CH\textsubscript{3}) and 6.98–7.93 (m, 14H, ArH) ppm; 13C NMR (DMSO-\textit{d}_6): 23.51, 106.81, 118.27, 123.34, 127.41, 130.62, 131.01, 147.01, 146.15, 149.87, 157.32, and 176.59; MS m/z (%) = 512 (M\(^+\), 21); Anal. Calcd for C\textsubscript{26}H\textsubscript{20}N\textsubscript{6}O\textsubscript{2}S\textsubscript{2} (512.11): C, 60.92; H, 3.93; N, 16.39; Found: C, 60.94; H, 3.91; N, 16.35%.

3.1.3. (N,N’E,N,N’E)-N,N’-(5,5’-(1,4-phenylene)bis(3-phenyl-1,3,4-thiadiazole-5(3H)-ylidene))dianiline (10)

Brown solid; Yield (51%); mp. 300 °C. IR (KBr): ν\text{max} 3070 (CH aromatic) cm\(^{-1}\); 1H NMR (DMSO-\textit{d}_6): 7.06–8.26 (m, 24H, ArH and CH=N) ppm; MS m/z (%) = 580 (M\(^+\), 32); Anal. Calcd for C\textsubscript{34}H\textsubscript{24}N\textsubscript{6}O\textsubscript{2}S\textsubscript{2} (580.72): C, 70.32; H, 4.17; N, 14.47; Found: C, 70.36; H, 4.21; N, 14.41%.

3.2. General procedure for the preparation of thiadiazoles (15 and 16)

A mixture of methyl-2-arylidene hydrazine carbodithioates (12) (10 mmol) and bis-hydrazonoyl chlorides (3) (5 mmol) or hydrazonoyl chloride (11) (10 mmol) was refluxed in dioxane (20 mL) and triethylamine (1.01 g, 1.39 mL, 10 mmol) until methanethiol ceased to evolve (6–10 h) and the progress of the reaction was monitored by TLC. The reaction mixture was allowed to cool and then poured into ice–hydrochloric acid with stirring. The solid that precipitated out was collected, washed with water several times, dried, and recrystallized from DMF/MeOH to give the final products (15 and 16).

3.2.1. -2-((4-methoxybenzylidene)hydrazono)-3-(4-methoxyphenyl)-5-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (15a)

Light orange solid; Yield (74%); mp. 188 °C. IR (KBr): ν\text{max} 3051 (CH aromatic), 1626 (C=N) and 1605 (C=C) cm\(^{-1}\); 1H NMR (DMSO-\textit{d}_6): 3.89 (s, 3H, CH\textsubscript{3}O) and 7.21–8.39 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 431 (M\(^+\), 42); Anal. Calcd for C\textsubscript{22}H\textsubscript{17}N\textsubscript{5}O\textsubscript{3}S\textsubscript{3} (431.11): C, 61.24; H, 3.97; N, 16.23; Found: C, 61.27; H, 3.94; N, 16.21%.

187
3.2.2. -2-((4-methylbenzylidene)hydrazono)-5-(4-nitrophenyl)-3-(p-tolyl)-2,3-dihydro-1,3,4-thiadiazole (15b)

Light brown solid; Yield (52%); mp 221 °C. IR (KBr): ν_{max} 3050 (CH aromatic), 1624 (C=N) and 1601 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.39 (s, 3H, CH$_3$) and 7.19–8.54 (m, 14H, ArH and CH=N) ppm; 13C NMR (DMSO-d_6): 19.21, 121.08, 122.56, 125.46, 128.35, 129.01, 129.62, 129.98, 130.09, 133.02, 134.58, 140.02, 144.61, 146.52, 147.69, 150.61, and 152.27. MS m/z (%) = 415 (M$^+$, 29); Anal. Calcd for C$_{22}$H$_{17}$N$_5$O$_2$S (415.10): C, 63.60; H, 4.12; N, 16.86; Found: C, 63.59; H, 4.15; N, 16.89%.

3.2.3. 2-((2-hyroxybenzylidene)hydrazono)-5-(4-nitrophenyl)-1,3,4-thiadiazol-3(2H)-yl)phenol (15c)

Red solid; Yield (49%); mp 198 °C. IR (KBr): ν_{max} 3327 (OH), 3035 (CH aromatic), 1612 (C=N) and 1604 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 7.09–8.29 (m, 14H, ArH and CH=N) and 10.44 (s, 1H, OH) ppm; MS m/z (%) = 417 (M$^+$, 51); Anal. Calcd for C$_{21}$H$_{15}$N$_5$O$_3$S (417.44): C, 60.42; H, 3.62; N, 16.78; Found: C, 60.44; H, 3.59; N, 16.79%.

3.2.4. -2-(benzylidenehydrazono)-5-(4-nitrophenyl)-3-phenyl-2,3-dihydro-1,3,4-thiadiazole (15d)

Orange solid; Yield (45%); mp 211 °C. IR (KBr): ν_{max} 3059 (CH aromatic), 1629 (C=N) and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 7.33–8.36 (m, 15H, ArH and CH=N) ppm; MS m/z (%) = 401 (M$^+$, 37); Anal. Calcd for C$_{21}$H$_{15}$N$_5$O$_2$S (401.1): C, 62.83; H, 3.77; N, 17.45; Found: C, 62.85; H, 3.79; N, 17.41%.

3.2.5. -2-((4-chlorobenzylidene)hydrazono)-3-(4-chlorophenyl)-5-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (15e)

Orange solid; Yield (61%); mp 201 °C. IR (KBr): ν_{max} 3051 (CH aromatic), 1628 (C=N) and 1604 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 7.09–8.41 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 435 (M$^+$, 39); Anal. Calcd for C$_{21}$H$_{14}$ClN$_5$O$_2$S (435.89): C, 57.86; H, 3.24; N, 16.07; Found: C, 57.89; H, 3.26; N, 16.01%.

3.2.6. -2-((4-bromobenzylidene)hydrazono)-3-(4-bromophenyl)-5-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (15f)

Brown solid; Yield (58%); mp 213 °C. IR (KBr): ν_{max} 3042 (CH aromatic), 1620 (C=N) and 1599 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 7.11–7.54 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 480 (M$^+$, 26); Anal. Calcd for C$_{21}$H$_{14}$BrN$_5$O$_2$S (480.34): C, 52.51; H, 2.94; N, 14.58; Found: C, 52.49; H, 2.95; N, 14.55%.

3.2.7. -2-((4-nitrobenzylidene)hydrazono)-3,5-bis(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (15g)

Brown solid; Yield (63%); mp 227 °C. IR (KBr): ν_{max} 3050 (CH aromatic), 1629 (C=N) and 1601 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 7.31–8.56 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 446 (M$^+$, 62); Anal. Calcd for C$_{21}$H$_{14}$N$_6$O$_4$S (446.44): C, 56.50; H, 3.16; N, 18.82; Found: C, 56.51; H, 3.19; N, 18.86%.
3.2.8. 3-(furan-2-yl)-2-((furan-2-ylmethylene)hydrazono)-5-(4-nitrophenyl)-2,3-dihydro-1,3,4-thiadiazole (15h)
Brown solid; Yield (69%); mp 202 °C. IR (KBr): ν_{max} 3060 (CH aromatic), 1632 (C=N) and 1601 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 6.51–7.89 (m, 12H, ArH and Furan H’s) 8.21 (s, 2H, CH=N) ppm; 13C NMR (DMSO-d_6): 113.05, 117.82, 124.03, 125.36, 126.21, 128.09, 129.54, 130.94, 134.76, 138.32, 140.75, 144.39, 148.02, 150.36, 156.82, and 159.79. MS m/z (%) = 391 (M$^+$, 18); Anal. Calcd for C$_{19}$H$_{13}$N$_5$O$_3$S (391.40): C, 58.30; H, 3.35; N, 17.89; Found: C, 58.33; H, 3.36; N, 17.87%.

3.2.9. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((4-methoxybenzylidene) hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16a)
Brown solid; Yield (79%); mp 258 °C. IR (KBr): ν_{max} 3085 (CH aromatic), 1658 (C=O), 1623 (C=N), and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.34 (s, 6H, 2CH$_3$); 3.88 (s, 6H, 2CH$_3$O) and 6.99–8.14 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 626 (M$^+$, 51); Anal. Calcd for C$_{30}$H$_{26}$N$_8$O$_4$S$_2$ (626.15): C, 57.49; H, 4.18; N, 17.88; Found: C, 57.46; H, 4.19; N, 17.92%.

3.2.10. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((4-methylbenzylidene)hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16b)
Brown solid; Yield (63%); mp 304 °C. IR (KBr): ν_{max} 3054 (CH aromatic), 1667 (C=O), 1615 (C=N), and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.49 (s, 6H, 2CH$_3$) and 7.01–8.24 (m, 20H, ArH and CH=N) ppm; MS m/z (%) = 594 (M$^+$, 38); Anal. Calcd for C$_{30}$H$_{26}$N$_8$O$_2$S$_2$ (594.16): C, 60.59; H, 4.41; N, 18.84; Found: C, 60.62; H, 4.45; N, 18.88%.

3.2.11. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((2-hydroxybenzylidene) hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16c)
Brown solid; Yield (38%); mp 258 °C. IR (KBr): ν_{max} 3317 (OH), 3085 (CH aromatic), 1666 (C=O), 1615 (C=N), and 1604 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.51 (s, 6H, 2CH$_3$), 7.06–8.25 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 598 (M$^+$, 38); Anal. Calcd for C$_{28}$H$_{22}$N$_8$O$_4$S$_2$ (598.12): C, 56.18; H, 3.70; N, 18.72; Found: C, 56.21; H, 3.69; N, 18.74%.

3.2.12. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((benzylidene) hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16d)
Brown solid; Yield (48%); mp 267 °C. IR (KBr): ν_{max} 3055 (CH aromatic), 1658 (C=O), 1613 (C=N), and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.52 (s, 6H, 2CH$_3$) and 7.12–8.24 (m, 16H, ArH and CH=N) ppm; 13C NMR (DMSO-d_6): 21.67, 109.37, 122.87, 125.39, 127.58, 129.84, 130.98, 131.97, 139.56, 146.47, 1498.03, 159.37, and 188.07. MS m/z (%) = 566 (M$^+$, 49); Anal. Calcd for C$_{28}$H$_{22}$N$_8$O$_2$S$_2$ (566.13): C, 59.35; H, 3.91; N, 19.77; Found: C, 59.35; H, 3.92; N, 19.74%.
3.2.13. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((4-chlorobenzylidene)hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16e)

Brown solid; Yield (74%); mp. 263 °C. IR (KBr): ν_{max} 3109 (CH aromatic), 1665 (C=O), 1612 (C=N), and 1599 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.51 (s, 6H, 2CH$_3$) and 7.14–8.33 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 635 (M$^+$, 61); Anal. Calcd for C$_{28}$H$_{20}$Cl$_2$N$_8$O$_2$S$_2$ (635.55): C, 52.92; H, 3.17; N, 17.63; Found: C, 52.93; H, 3.19; N, 17.65%.

3.2.14. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((4-bromobenzylidene)hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16f)

Yellow Brown solid; Yield (18%); mp 259 °C. IR (KBr): ν_{max} 3086 (CH aromatic), 1659 (C=O), 1627 (C=N), and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.50 (s, 6H, 2CH$_3$) and 7.18–8.44 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 724 (M$^+$, 38); Anal. Calcd for C$_{28}$H$_{20}$Br$_2$N$_8$O$_2$S$_2$ (724.95): C, 46.42; H, 2.78; N, 15.47; Found: C, 46.42; H, 2.75; N, 15.48%.

3.2.15. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((4-nitrobenzylidene)hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16g)

Deep brown solid; Yield (71%); mp ? 300 °C. IR (KBr): ν_{max} 3078 (CH aromatic), 1666 (C=O), 1623 (C=N), and 1579 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.53 (s, 6H, 2CH$_3$) and 7.22–8.42 (m, 14H, ArH and CH=N) ppm; MS m/z (%) = 656 (M$^+$, 54); Anal. Calcd for C$_{28}$H$_{20}$N$_{10}$O$_6$S$_2$ (656.1): C, 51.21; H, 3.07; N, 21.33; Found: C, 51.23; H, 3.08; N, 21.37%.

3.2.16. 1,1’-((5,5’)-4,4’-(1,3-phenylene)bis(5-((furan-2-ylmethylene)hydrazono)-4,5-dihydro-1,3,4-thiadiazole-4,2-diyl))diethanone (16h)

Deep brown solid; Yield (56%); mp ? 300 °C. IR (KBr): ν_{max} 3117 (CH aromatic), 1666 (C=O), 1629 (C=N), and 1605 (C=C) cm$^{-1}$; 1H NMR (DMSO-d_6): 2.49 (s, 6H, 2CH$_3$) and 6.99–8.36 (m, 12H, ArH, Furan H’s and CH=N) ppm; MS m/z (%) = 546 (M$^+$, 47); Anal. Calcd for C$_{24}$H$_{18}$N$_8$O$_4$S$_2$ (546.09): C, 52.74; H, 3.32; N, 20.50; Found: C, 52.71; H, 3.36; N, 20.49%.

4. Conclusions

We reported the synthesis and characterization of new thiadiazoles based on a simple base-catalyzed cyclization reaction of mono- or bis-hydrazonoyl halides with methyl hydrogen phenyl carbonimidodithioate or methyl-2-aryliden hydrazinecarbodithioate.

Acknowledgment

The financial support of this work (Project Number 160029) by the Deanship of Scientific Research King Faisal University, Saudi Arabia, is gratefully acknowledged.
References