Solvent-Free Preparation of Primary Carbamates

Ali Reza MODARRESI-ALAM*, Mohsen ROSTAMIZAHED and Parisa NAJAFI
Department of Chemistry, Sistan & Baluchestan University, Zahedan,
P. O. Box: 98165-175, Zip Code: 98135, IRAN
e-mail: modaresi@hamoon.usb.ac.ir

Received 23.11.2005

Herein, we describe a simple and efficient method for the conversion of compounds containing a hydroxyl group to primary carbamates at room temperature with excellent yield and purity, and without any epimerization, in the absence of solvent.

Key Words: Solvent-free, N-unsubstituted carbamates, isocyanic acid, compounds containing hydroxyl group.

Introduction

Carbamates (urethanes) are of particular interest due to their usefulness in various industries\(^1\)\(^-\)\(^3\), such as agrochemicals\(^1\)\(^-\)\(^2\)\(^,\)\(^4\)\(^-\)\(^5\), where they are used as herbicides, fungicides, and pesticides, in the pharmaceuticals industry\(^1\)\(^-\)\(^2\)\(^,\)\(^6\) as drug intermediates, and the polymer industry\(^1\)\(^-\)\(^2\)\(^,\)\(^7\) in the synthesis of polyurethanes, as well as in peptide synthesis. In addition to these, among the various amine-protecting groups, carbamates are commonly used due to their chemical stability towards acids, bases, and hydrogenation\(^8\). The most widely utilized method for the synthesis of carbamates uses highly toxic phosgene as a reagent in organic solvents, which is also toxic and flammable\(^1\)\(^-\)\(^3\). Therefore, the conventional method involves environmental and safety problems. Owing to the above-mentioned, considerable effort has been directed toward alternative routes of preparation of urethanes using carbon dioxide as a phosgene replacement. Carbon dioxide is well known to react rapidly with amines to form carbamic acid ammonium salts. However, as the nucleophilicity of the carbamate anion is lower than that of the amine formed in the equilibrium of the salt formation reaction, the reaction of the carbamate salts with alkyl halides does not selectively afford carbamates. Furthermore, this method cannot produce N-unsubstituted carbamates. Synthesis of N-unsubstituted carbamates \(^1\) from alcohols has also been accomplished by several-pot reaction methods such as trichloroacetyl isocyanate\(^9\)\(^,\)\(^10\), chloroformates (starting from toxic phosgene)\(^11\), chlorosulfonyl isocyanate\(^12\), and cyanogen chloride\(^13\).

Loev and coworkers reported the synthesis of N-unsubstituted carbamates from alcohols by treatment with sodium cyanate and trifluoroacetic acid in certain organic solvents such as benzene, methylene chloride, and tetrachloride carbon, without any spectral data such as IR and NMR\(^14\). These solvents are toxic and are

*Corresponding author
in a typical procedure, a mixture of ROH (1 mmol) and trichloroacetic acid (2 mmol) was thoroughly ground in an agate mortar for a few minutes. Then sodium cyanate (2 mmol) was placed in the mortar and ground thoroughly for 30 min. The reaction mixture was allowed to stand for 12 h at room temperature. The product was precipitated by the addition of a small amount of water and pure carbamates \(1a-t\) were filtered (see Table, Scheme 1).

As shown in the Table, several structurally varied substrates have been used for pure and clean synthesis of primary carbamates \(1a-t\) under this simple procedure. Primary, secondary, tertiary, allylic, benzylic alcohols, diols (2n, entry 14), phenols, and cyclohexyloxime (2l, entry 12) are all smoothly converted into the corresponding carbamates\(^{14,24-30}\). It is remarkable to note that in the case of (-)-menthol 2a, the reaction produced the corresponding (-)-menthyl carbamate \(1a\) without any epimerization under this experimental condition\(^{24,31}\). In all cases, the crude product was actually quite pure and did not require additional purification or work-up. The conversions were improved using CF\(_3\)COOH; however, the best results were obtained by CCl\(_3\)COOH. Increasing the reaction temperature to 80 °C had no effect on the yield and/or purity, with the exception of \(1t\) (entry 20). In this case, the yield and purity was improved at 60-70 °C for 1 h. The steric hindrance of the tert-butyl group in comparison to the H and CH\(_3\) groups could justify our finding. Phenols containing electron-withdrawing (CN, COOR, and CHO) failed to react under our experimental conditions. Most likely these functional groups decrease the nucleophilicity of phenol oxygen for effective attacking of intermediate 5 and/or 7, Scheme 2. This may be the reason why compound \(1s\) (entry 19) was obtained in low yield (55%).

The products were identified by comparison of their IR, \(^1\)H-NMR (80 MHz) spectral data, or by their physical properties with those of authentic samples\(^{14,24,25}\). In addition, they have also been characterized.
Solvent-Free Preparation of Primary Carbamates, A. R. MODARRESI-ALAM, et al.,

by 1H-NMR (500 MHz) and 13C-NMR (125 MHz). 13C-NMR spectral display signals for carbonyl carbons of aliphatic or aromatic carbamate were in the range of 147-157 ppm.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound containing R</th>
<th>% Yield (#)</th>
<th>Mp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a (-)-menthyl</td>
<td>75 (1a)</td>
<td>166-168</td>
</tr>
<tr>
<td>2</td>
<td>2b CH\textsubscript{3}CH\textsubscript{2}</td>
<td>60 (1b)</td>
<td>46-48</td>
</tr>
<tr>
<td>3</td>
<td>2c CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}</td>
<td>80 (1c)</td>
<td>58-59</td>
</tr>
<tr>
<td>4</td>
<td>2d (CH\textsubscript{3})\textsubscript{2}CH</td>
<td>80 (1d)</td>
<td>89-91</td>
</tr>
<tr>
<td>5</td>
<td>2e CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}</td>
<td>70 (1e)</td>
<td>53-55</td>
</tr>
<tr>
<td>6</td>
<td>2f CH\textsubscript{3}CH\textsubscript{2}(CH\textsubscript{3})CH</td>
<td>70 (1f)</td>
<td>93-94</td>
</tr>
<tr>
<td>7</td>
<td>2g (CH\textsubscript{3})\textsubscript{2}CHCH\textsubscript{2}CH\textsubscript{2}</td>
<td>75 (1g)</td>
<td>64-66</td>
</tr>
<tr>
<td>8</td>
<td>2h C\textsubscript{6}H\textsubscript{11}</td>
<td>80 (1h)</td>
<td>108-110</td>
</tr>
<tr>
<td>9</td>
<td>2i (CH\textsubscript{3})\textsubscript{3}</td>
<td>70 (1i)</td>
<td>106-108</td>
</tr>
<tr>
<td>10</td>
<td>2j PhCH\textsubscript{2}</td>
<td>80 (1j)</td>
<td>87-89</td>
</tr>
<tr>
<td>11</td>
<td>2k (CH\textsubscript{3})\textsubscript{2}CHCOCH\textsubscript{2}CH\textsubscript{2}</td>
<td>80 (1k)</td>
<td>57-59</td>
</tr>
<tr>
<td>12</td>
<td>2l -(CH\textsubscript{2})\textsubscript{5}-C=N</td>
<td>80 (1l)</td>
<td>94-96</td>
</tr>
<tr>
<td>13</td>
<td>2m H\textsubscript{2}C=CHCH\textsubscript{2}</td>
<td>65 (1m)</td>
<td>19-21</td>
</tr>
<tr>
<td>14</td>
<td>2n (CH\textsubscript{3})\textsubscript{4}</td>
<td>65 (1n)</td>
<td>195-196</td>
</tr>
<tr>
<td>15</td>
<td>2o C\textsubscript{6}H\textsubscript{5}</td>
<td>95 (1o)a</td>
<td>141-143</td>
</tr>
<tr>
<td>16</td>
<td>2p 2-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>79 (1p)</td>
<td>132-135</td>
</tr>
<tr>
<td>17</td>
<td>2q 3-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>83 (1q)</td>
<td>137-139</td>
</tr>
<tr>
<td>18</td>
<td>2r 4-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>80 (1r)</td>
<td>134-136</td>
</tr>
<tr>
<td>19</td>
<td>2s 4-BrC\textsubscript{6}H\textsubscript{4}</td>
<td>55 (1s)</td>
<td>139-142</td>
</tr>
<tr>
<td>20</td>
<td>2t 2-C(CH\textsubscript{3})\textsubscript{3},4-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{3}</td>
<td>92 (1t)b</td>
<td>143-144</td>
</tr>
</tbody>
</table>

aBy continuous extraction. bBy heating at 60-70 °C for 1 h.

The possible reaction mechanism is depicted in Scheme 2. The first step could be the reaction of sodium cyanate 3 with an acid (trichloroacetic acid) to give isocyanic acid 531,32. In the second step, a proton of trichloroacetic acid 4 is added to isocyanic acid 5 to yield the intermediate 7. Finally, formation of carbamate 1 may occur by a nucleophilic attack of alcohol 2 on the carbon of the intermediate 7 (Scheme 2).

\textbf{Conclusion}

This simple solvent-free method affords various primary carbamates at room temperature, with excellent yields and high purity, without involvement of toxic solvents, expensive starting materials, the formation of
any undesirable side products, or epimerization. Furthermore, this method does not require purification or separation techniques (column chromatography), nor heat. Further studies are in progress.

Experimental

General. 1H-NMR and 13C-NMR spectra were recorded by a Bruker Avance DRX 500 (500 MHz) and a Varian EM 390 (80 MHz). The IR spectra were obtained on a Shimadzu-470. Melting points were recorded by an Electro Thermal 9100 and were uncorrected. Thin layer chromatography (TLC) was carried out using plastic sheets pre-coated with silica gel 60 F. The products were identified through comparison of their spectral data, IR, 1H-NMR (80 MHz), and physical properties to those of authentic samples. All starting materials and solvents were purified with the proper purification techniques before use.

General procedure. A mixture of (-)-menthol (0.156 g, 1 mmol) and trichloroacetic acid (0.34 g, 2 mmol) was thoroughly ground in an agate mortar for a few minutes. Then sodium cyanate (0.13 g, 2 mmol) was placed in the mortar and ground thoroughly for 30 min. The reaction mixture was allowed to stand for 12 h at room temperature. The product was precipitated by the addition of a small amount of water and pure carbamate $1a$ was filtered.

In the cases that carbamates dissolved in water (such as $1b$, $1c$, $1d$, $1i$, 1m, and $1o$), after the addition of a little HCl at pH 3, the aqueous phase was constantly extracted with dichloromethane. The organic phase was dried over magnesium sulfate and the solvent was removed under reduced pressure to give the pure carbamates.

Menthyl Carbamate. The reaction afforded white crystals $1a$ (75% yield), mp = 166-168 °C (lit., 24 156-157 °C), $[\alpha]^\text{D}_{17} = -125$ °C (0.60, CHCl$_3$). 1H-NMR (500 MHz, CDCl$_3$), ppm; 0.80 (d, J = 6.9 Hz, 3H), 0.86 (dd, J = 12.1 Hz, J = 3.2 Hz, 1H), 0.90 (d, J = 2.7 Hz, 3H), 0.91 (d, J = 2.1 Hz, 3H), 0.97 (q, J = 12.0 Hz, 2H), 1.06 (qd, J = 13.1 Hz, J = 3.3 Hz, 1H), 1.30 (tt, J = 11.6 Hz, J = 2.9 Hz, 1H), 1.44-1.52 (m, 1H), 1.65-1.69 (m, 2H), 1.94 (hd, J = 6.9 Hz, J = 2.5 Hz, 1H), 2.06 (dt, J = 11.8 Hz, J = 4.6 Hz, 1H), 4.54 (td, J = 10.9 Hz, J = 4.4 Hz, 1H), 4.85 (br, 2H). 13C-NMR (125 MHz, CDCl$_3$), ppm; 157.07, 74.93, 47.34, 41.29, 34.29, 31.36, 26.29, 23.57, 22.02, 20.75, 16.47.

Ethyl Carbamate. The reaction afforded white crystals $1b$ (60% yield), mp = 46-48 °C (lit., 25 48-50 °C). IR (KBr); 3420 (s), 3322 (m), 3278 (m), 3200 (m), 2987 (m), 2900 (w), 1688 (s), 1615 (m), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1420 (m), 1380 (m), 1330 (m), 1075 (m) cm$^{-1}$. 1H-NMR (80 MHz, CDCl$_3$), ppm; 1.25 (t, J = 6.3 Hz, 3H), 4.16 (q, J = 6.3 Hz, 2H), 5.0 (br, 2H).

1-Propyl Carbamate. The reaction afforded white crystals $1c$ (80% yield), mp = 58-59 °C (lit., 25 60 °C). IR (KBr); 3420 (s), 3326 (w), 3285 (m), 3200 (w), 2950 (m), 2890 (w), 1680 (vs), 1620 (s), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1440 (w), 1425 (s), 1360 (s), 1300 (w), 1115 (w), 1060 (s), 917 (w) cm$^{-1}$. 1H-NMR (80 MHz, CDCl$_3$), ppm; 0.90 (t, J = 7.0 Hz, 3H), 1.6 (sextet, J = 7.0 Hz, 2H), 4.00 (t, J = 7.0 Hz, 2H), 4.90 (br, 2H).

2-Propyl Carbamate. The reaction afforded white crystals $1d$ (80% yield), mp = 89-91 °C (lit., 25 62-64 °C).
Solvent-Free Preparation of Primary Carbamates, A. R. MODARRESI-ALAM, et al.,

92-94 °C. IR (KBr); 3420 (s), 3326 (w), 3285 (m), 3200 (w), 2989 (m), 1680 (s), 1615 (m), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1468 (w), 1409 (m), 1380 (w), 1319 (m), 1112 (m), 1047 (s), 790 (w), 600 (m) cm⁻¹. ¹H-NMR (80 MHz, CDCl₃), δ ppm: 1.20 (d, J = 6.2 Hz, 6H), 4.85 (m, 3H).

1-Butyl Carbamate. The reaction afforded white crystals 1e (70% yield), mp = 53-55 °C (lit.,²⁵ 54 °C). IR (KBr); 3415 (s), 3320 (s), 3265 (m), 3200 (w), 2960 (s), 2870 (w), 1680 (vs), 1610 (s), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1455 (w), 1415 (m), 1360 (m), 1334 (s), 1125 (w), 1075 (s), 915 (w), 885 (w), 785 (w), 735 (w), 680 (w) cm⁻¹. ¹H-NMR (80 MHz, CDCl₃), δ ppm: 0.95 (t, J = 6.7 Hz, 3H), 1.23-1.80 (m, 4H), 4.12 (t, J = 6.7 Hz, 2H), 5.0 (br, 2H).

2-Butyl Carbamate. The reaction afforded white crystals 1f (70% yield), mp = 93-94 °C. IR (KBr); 3415 (s), 3326 (w), 3255 (m), 3200 (m), 2980 (m), 2915 (w), 2875 (w), 1677 (vs), 1651 (m), 1611 (s), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1455 (w), 1420 (m), 1377 (w), 1325 (m), 1175 (w), 1115 (m), 1052 (s), 964 (w), 910 (w), 870 (w), 840 (w), 783 (w), 600 (m) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), δ ppm: 0.81 (t, J = 7.5 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H), 1.42 (d, J = 6.8 Hz, 1H), 1.50 (d, J = 6.1 Hz, 1H), 4.60 (6ddq, J = 6.2 Hz, J = 6.2 Hz, J = 6.2 Hz, 1H), 5.32 (br, 2H). ¹³C-NMR (125 MHz, CDCl₃), δ ppm; 157.63, 72.68, 28.81, 19.44, 9.42.

Isoamyl Carbamate. The reaction afforded white crystals 1g (75% yield), mp = 64-66 °C (lit.,²⁵ 64 °C). IR (KBr); 3415 (s), 3320 (w), 3275 (m), 3200 (m), 2980 (m), 2915 (w), 2875 (w), 1677 (vs), 1611 (m), 1611 (s), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1453 (m), 1405 (s), 1377 (w), 1325 (m), 1175 (w), 1115 (m), 1052 (s), 964 (w), 910 (w), 870 (w), 840 (w), 783 (w), 600 (m) cm⁻¹. ¹H-NMR (80 MHz, CDCl₃), δ ppm; 0.95 (d, J = 5.6 Hz, 6H), 1.3-1.6 (m, 3H), 4.15 (t, J = 7.0 Hz, 2H), 4.60 (br, 2H). ¹³C-NMR (80 MHz, CDCl₃), δ ppm; 156.96, 73.33, 31.85, 25.30, 23.75.

Cyclohexyl Carbamate. The reaction afforded white crystals 1h (80% yield), mp = 108-110 °C. IR (KBr); 3418 (s), 3317 (m), 3275 (m), 3200 (m), 2945 (m), 2880 (w), 1680 (s), 1615 (m), 1600 (m), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1470 (w), 1455 (w), 1420 (m), 1370 (m), 1360 (m), 1089 (w), 790 (w), 560 (w) cm⁻¹. ¹H-NMR (80 MHz, CDCl₃), δ ppm; 0.95 (d, J = 5.6 Hz, 6H), 1.3-1.6 (m, 3H), 4.15 (t, J = 7.0 Hz, 2H), 4.60 (br, 2H). ¹³C-NMR (500 MHz, CDCl₃), δ ppm; 157.63, 72.68, 28.81, 19.44, 9.42.

Ethylene glycol monoisopropyl ether Carbamate. The reaction afforded white crystals 1k (80% yield), mp = 53-55 °C (lit.,²⁶ 53 °C). IR (KBr); 3420 (s), 3326 (m), 3285 (m), 3200 (w), 3020 (w), 2940 (w), 2870 (w), 1718 (vs), 1612 (vs), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1468 (w), 1440 (m), 1382 (m), 1360 (m), 1250 (w), 1167 (m), 1055 (m), 1025 (w), 845 (w), 785 (w), 560 (w) cm⁻¹. ¹H-NMR (80 MHz, CDCl₃), δ ppm; 1.21-1.89 (m, 3H), 4.15 (t, J = 7.0 Hz, 2H), 4.60 (br, 2H). ¹³C-NMR (125 MHz, CDCl₃), δ ppm; 157.63, 72.68, 28.81, 19.44, 9.42.

24
Solvent-Free Preparation of Primary Carbamates, A. R. MODARRESI-ALAM, et al.,

(11) H-NMR (500 MHz, CDCl₃), δ ppm; 1.15 (d, J = 6.1 Hz, 6H), 3.59 (h + t, 3H), 4.16 (t, J = 4.6 Hz, 2H), 5.19 (br, 2H). ¹³C-NMR (125 MHz, CDCl₃), δ ppm; 157.31, 71.98, 66.23, 64.58, 21.96.

Cyclohexyloxime Carbamate. The reaction afforded white crystals 11 (80% yield), mp = 94-96 °C (lit., 14 94-96 °C). IR (KBr); 3450 (s), 3300 (m), 3295 (m), 3010 (m), 2998 (w), 2855 (w), 1718 (vs), 1676 (w), 1643 (w), 1578 (m), 1574 (w), 1558 (w), 1518 (w), 1504 (w), 1486 (w), 1467 (w), 1430 (w), 1378 (vs), 1349 (m), 1340 (m), 1321 (w), 1253 (w), 1224 (w), 1136 (w), 1108 (w), 992 (s), 911 (s), 872 (s), 845 (w), 775 (m), 660 (w), 628 (s), 585 (m), 543 (m) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), ppm; 1.58-1.72 (m, 6H), 2.25 (t, J = 6.3 Hz, 2H), 2.55 (t, J = 6.3 Hz, 2H), 6.08 (br, 2H).

¹³C-NMR (125 MHz, CDCl₃), ppm; 157.07, 166.08, 31.91, 26.71, 26.48, 25.57, 25.22.

Allyl Carbamate 30. The reaction afforded white crystals 1m (65% yield), mp = 19-21 °C. IR (KBr); 3475 (s), 3350 (s), 3195 (m), 3085 (w), 2945 (w), 1713 (vs), 1647 (w), 1601 (s), 1574 (w), 1558 (w), 1539 (w), 1518 (w), 1504 (w), 1486 (w), 1445 (w), 1397 (s), 1331 (s), 1286 (w), 1119 (m), 1062 (s), 995 (m), 930 (m), 783 (m) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), ppm; 4.49 (d, J = 5.5 Hz, 2H), 5.15 (d, J = 10.4 Hz, 1H), 5.25 (dd, J = 17.2 Hz, J = 1.1 Hz, 1H), 5.38 (br, 2H), 5.85 [o (ddt), J = 17.2 Hz, J = 10.6 Hz, J = 5.4 Hz, 1H]. ¹³C-NMR (125 MHz, CDCl₃), δ ppm; 157.19, 132.46, 117.48, 65.39.

1,4-Butanediol dicarbamate 27. The reaction afforded white crystals 1n (65% yield), mp = 195-196 °C. IR (KBr), 3420 (s), 3320 (m), 3280 (m), 3200 (m), 2960 (m), 2900 (w), 2860 (w), 1680 (vs), 1620 (s), 1480 (w), 1415-1480 °C). IR (KBr); 3400 (m), 3300 (m), 3250 (m), 2950 (w), 1700 (vs), 1590 (w), 1490 (w), 1470 (vw), 1380 (m), 1300 (m), 1200 (m), 970 (w), 820 (w), 760 (w), 740 (w), 700 (w), 580 (vw), 500 (vw) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), δ ppm; 1.55 (quasi s, 4H), 3.89 (quasi s, 4H), 6.42 (br, 4H).

¹³C-NMR (125 MHz, CDCl₃), ppm; 25.41, 62.99, 156.85, Analysis Calcd. For C₆H₁₂N₂O₄: C, 40.78; H, 6.85; N, 15.86; Found; C, 40.69; H, 7.49; N, 13.96%.

Phenyl Carbamate. Reaction afforded white crystals 1o (95% yield), mp = 141-143 °C (lit., 14 145-148 °C). IR (KBr); 3400 (m), 3300 (m), 3250 (m), 2950 (w), 1700 (vs), 1590 (w), 1490 (w), 1470 (vw), 1380 (m), 1300 (m), 1200 (m), 970 (w), 820 (w), 760 (w), 740 (w), 700 (w), 580 (vw), 500 (vw) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), δ ppm; 5.06 (br, s, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.4 Hz, 2H).

2-Methylphenyl Carbamate 28. The reaction afforded white crystals 1p (79% yield), mp = 132-135 °C. IR (KBr); 3400 (m), 3350 (w), 3300 (w), 2800 (vw), 1700 (s), 1610 (w), 1490 (w), 1360 (m), 1225 (m), 1180 (m), 1110 (m), 1040 (w), 970 (m), 780 (w), 720 (w), 600 (w) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), δ ppm; 2.24 (s, 3H), 5.11 (br, s, 2H), 7.07 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.7 Hz, 1H), 7.21 (t, J = 6.3 Hz, 1H), ¹³C-NMR (125 MHz, CDCl₃), δ ppm; 16.01, 122.11, 125.98, 126.90, 130.64, 131.11, 149.22, 155.00.

3-Methylphenyl Carbamate. The reaction afforded white crystals 1q (83% yield), mp = 137-139 °C (lit., 35 139 °C). IR (KBr); 3400 (m), 3310 (m), 3250 (m), 3180 (w), 1700 (s), 1600 (w), 1580 (w), 1480 (w), 1350 (m), 1240 (m), 1150 (m), 1080 (w), 1010 (w), 1000 (w), 970 (w), 910 (w), 800 (w), 750 (w), 700 (w), 680 (w), 550 (w) cm⁻¹. ¹H-NMR (500 MHz, CDCl₃), δ ppm; 2.38 (s, 3H), 5.12 (br, s, 2H), 6.96 (d, J = 8.1 Hz, 1H), 6.98 (s, 1H), 7.05 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), ¹³C-NMR (125 MHz, CDCl₃),

δ ppm: 21.30, 118.59, 122.26, 126.49, 129.10, 139.57, 150.68, 155.22.

4-Methylphenyl Carbamate 28. The reaction afforded white crystals 1r (80% yield), mp = 134-136 °C. IR (KBr); 3410 (m), 3405 (m), 3200 (vw), 3265 (w), 2915 (w), 1700 (vs), 1613 (m), 1505 (m), 1361 (s), 1382 (s), 1217 (s), 1205 (s), 1163 (w), 1016 (w), 975 (w), 853 (w), 810 (w), 549 (w), 501 (w) cm⁻¹.

1H-NMR (500 MHz, CDCl₃), δ ppm: 2.36 (s, 3H), 5.23 (br, s, 2H), 7.04 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 13C-NMR (125 MHz, CDCl₃), δ ppm: 20.86, 121.40, 129.92, 135.34, 148.56, 155.63.

4-Bromophenyl Carbamate 29. The reaction afforded white crystals 1s (55% yield), mp = 139-142 °C. IR (KBr); 3400 (m), 3300 (m), 3250 (m), 3200 (w), 1700 (s), 1650 (w), 1580 (w), 1560 (w), 1540 (w), 1480 (m), 1460 (w), 1380 (m), 1200 (m), 1060 (w), 1010 (w), 980 (w), 800 (w), 722 (w), 500 (m) cm⁻¹.

1H-NMR (500 MHz, CDCl₃), δ ppm: 5.05 (br, s, 2H), 7.06 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 13C-NMR (125 MHz, CDCl₃), δ ppm: 118.70, 123.43, 132.40, 149.80, 154.46.

2-tert-Butyl-4-Methylphenyl Carbamate. After heating the reaction in 60-70 °C for 1 h, the resultant mixture was put aside for the appropriate period of 12 h. The reaction afforded white crystals 1t (92% yield), mp = 143-144 °C. IR (KBr); 3450 (m), 3250 (m), 2950 (m), 1720 (vs), 1610 (m), 1570 (w), 1490 (m), 1480 (w), 1450 (m), 1360 (s), 1280 (w), 1200 (s), 980 (m), 840 (w), 790 (w), 770 (w), 730 (w), 670 (w), 590 (w) cm⁻¹.

1H-NMR (500 MHz, CDCl₃), δ ppm: 1.39 (s, 9H), 2.36 (s, 3H), 5.30 (br, 2H), 6.97 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.19 (s, 1H), 13C-NMR (125 MHz, CDCl₃), δ ppm: 21.22, 30.31, 34.46, 123.93, 127.44, 127.82, 135.07, 141.02, 147.04, 155.76.

Acknowledgment

The Sistan & Baluchestan University Graduate Council supported this research.

References

5. A. Thompson, Pesticide Outlook 13, 84-86 (2002).

