Surface Properties and Catalytic Performance of Pt/PrSrCoO$_4$ Catalysts for NO Reduction by CO

Hua ZHONG*, Xirui ZENG
Department of Chemistry, Jinggangshan College, Jian, 343009, PR CHINA
e-mail: hua_zh@163.com

Received 22.04.2005

Perovskite-type Pr$_{2-x}$Sr$_x$CoO$_{4+\lambda}$ mixed oxides were prepared by different calcination temperatures and were investigated by XRD, BET, TPD, TPR and XPS methods. These catalysts possess high catalytic activities towards the NO reduction by CO, and the activity of the PrSrCoO$_4$ catalyst prepared by calcining at 750 °C is the best among these samples. This is explained in terms of its greater oxygen vacancies and larger BET surface areas. The influence of modification by a suitable amount of Pt-doping on the surface properties and catalytic activity for NO reduction by CO was studied. The results show that the Pt-modified PrSrCoO$_4$ catalysts display activity significantly higher than that of the Pt-free system PrSrCoO$_4$. Characterization of the catalysts by XRD, TPD, TPR and XPS methods reveals that both the surface and the bulk phase of the perovskite-type PrSrCoO$_4$ play important roles in the catalytic activities for NO reduction by CO.

Key Words: Perovskite-type A$_2$BO$_4$, Pt/PrSrCoO$_4$, XPS, NO reduction by CO.

Introduction

Perovskite oxides, ABO$_3$, have been extensively investigated. Among the reactions of particular interest is the reduction of NO by CO since both gases usually exist in effluent gas mixtures. As a result, the de-NO$_x$ reaction in the presence of CO has been studied by a number of researchers on various perovskite oxides$^{1-4}$. However, the perovskite-type A$_2$BO$_4$ mixed oxides of K$_2$NiF$_4$ structure consisting of alternating layers of ABO$_3$ perovskite and AO rock salt show high catalytic activity in the reactions involved in motor vehicles’ exhaust gas after treatment, and are recently studied as new materials for their low cost, high catalytic activity and high thermal stability5. Many studies have shown that the catalytic performances of A$_2$BO$_4$ mixed oxides, to a large extent, are associated with the species of A-site and B-site ions, and their corresponding valences, and the crystal structure of these oxides as well6. It is noted that there are many reports in the literature contributing to investigations of A$_2$BO$_4$ catalysts7,8. Actually, the studies involving the investigation of A$_2$BO$_4$ mixed oxides are extremely limited. Moreover, almost no literature has been dedicated to noble metals supported on monoliths or perovskite-type used as 3-way catalysts for

*Corresponding author
NO reduction by CO, although the perovskite-type system in pure form is promising. Therefore, further investigation is necessary.

We have already studied the catalytic oxidations of CO and C$_3$H$_8$ over perovskite-type LnSrCoO$_4$ (Ln = La, Pr, Nd, Sm, Eu) mixed oxides$^{9-12}$. The work presented in this study is a continuation of the studies performed in our laboratory on LnSrCoO$_4$. In this paper, using the citric acid sol-gel method and impregnating method, a series of catalysts were prepared and characterized. With NO reduction by CO as testing reactions, the catalytic performances of all these catalysts were investigated. To show the probable intrinsic performances, XRD, BET, TPD, TPR and XPS were employed.

Experimental

Preparation of catalysts

The perovskite-type Pr$_{2-x}$Sr$_x$CoO$_4$$_{±\lambda}$ catalysts were prepared by the citric acid sol-gel method. Briefly, praseodymium, strontium, and cobalt nitrates in a Pr:Sr:Co nominal molar ratio of 2-x:x:1.0 (x = 0.2, 0.4, 0.6, 0.8, 1.0) were dissolved in a citric acid solution at 80 °C with constant stirring. The polyglycol 20,000 was added in when the solution was evaporated to 40 mL. The stirring was continued until a viscous gel was formed. The resulting gel was evaporated to dryness, and the obtained precursor was calcined at 550 °C for 4 h, followed by pelletization and calcination once more at 950 °C (or 750, 850 °C) in air for 10 h.

γ-Al$_2$O$_3$-supported (γ-Al$_2$O$_3$ was crushed and sieved to 0.250 ± 0.800 mm and calcined overnight at 500 °C) Pt and x% (wt%) PrSrCoO$_4$ catalysts, marked as Pt/γ-Al$_2$O$_3$ and x% PrSrCoO$_4$/γ-Al$_2$O$_3$, were prepared by impregnating a γ-Al$_2$O$_3$ carrier (surface area, 108.9 m2/g) with an aqueous solution containing the desired molar ratio of praseodymium, strontium, cobalt nitrates, and citric acid, followed by drying at 110 °C for 4 h and then calcining at 750 °C in air for 6 h. Pt-modified PrSrCoO$_4$ catalysts, marked as y% Pt/PrSrCoO$_4$, were prepared by wet impregnating with y% (wt%) Pt, followed by drying at 110 °C for 4 h and then calcining at 550 °C in air for 6 h. All samples were pulverized to ca. 60-80 mesh size.

Characterization of catalysts

A powder X-ray diffractometer (D8/ADVANCE, Germany) over the range 20° ≥ 2θ ≥ 80°, at ambient temperature, was operated at 40 kV/10 mA, using Cu K$_\alpha$ radiation combined with a nickel filter.

The XPS analysis was carried out on a PHI 5000C ESCA X-ray photoelectron spectrometer using Al K$_\alpha$ radiation under a vacuum of 1.3 × 10$^{-7}$ Pa at 14 kV/20 mA. The effect of surface charge on the binding energy was corrected by using polluted carbon peak C$_{1s}$ = 285.00 eV.

Specific areas were calculated by the BET method from the nitrogen adsorption isotherms, recorded at liquid nitrogen temperature on the equipment ST-2000 (China), taking a value of 0.16 nm2 for the cross-sectional area of the N$_2$ molecule adsorbed at -196 °C.

Temperature programmed desorption (TPD) experiments were carried out in an automatic Micromeritics 3000 equipment interfaced to a data station. Under O$_2$ gas, catalyst samples (300 mg) were heated from ambient temperature to 950 °C at a rate of 8 °C/min and subsequently left for 1 h. When the system had cooled down to ambient temperature, He gas (carrier gas) was used to remove the O$_2$ in the
gas phase. Subsequently, with the rate of 8 °C/min, the curves of O₂-absorbed desorption were recorded by on-line chromatography.

Temperature programmed reduction (TPR) experiments were carried out in the same apparatus with TPD. The samples (100 mg) were first heated to 950 °C at a rate of 20 °C/min in a flow of N₂ (99.9%) gas and then cooled to ambient temperature. After being 10% H₂/N₂-purged for 1 h, at the rate of 20 °C/min, the curves of H₂ reduction were recorded by on-line chromatography.

Activity measurement of catalysts

The catalytic activities (catalyst load 250 mg, particle size 60-80 mesh) were determined at atmospheric pressure in an automatic Micromeritics flow reactor with a reaction mixture containing NO (2.02% vol-%), CO (1.99% vol-%), He (balance), and total GHSV (8000 h⁻¹). The gas composition was analyzed before and after the reaction by on-line gas chromatography with a thermal conductor detector (TCD) and connected to a computer integrator system using a TDX-01 (2 m) column for N₂, CO and NO, and a Porapak Q (3 m) column for CO₂ and N₂O. The ambient temperatures for columns and TCD are 50 °C and 75 °C, respectively. The formation of N₂O was hardly detected for all of the catalysts tested in this work. The catalytic activity and selectivity to N₂ were calculated by the following respective equations:

\[
\text{Conversion of NO} = \frac{[\text{NO}]_{\text{in}} - [\text{NO}]_{\text{out}}}{[\text{NO}]_{\text{in}}} \times 100\%
\]

\[
\text{Selectivity of N}_2 = 2\frac{[\text{N}_2]}{([\text{NO}]_{\text{in}} - [\text{NO}]_{\text{out}})} \times 100\%.
\]

Results and Discussion

Optimization of Pr₂₋ₓSrₓCoO₄₊λ catalysts’ composition and preparation conditions

The XRD patterns of Pr₂₋ₓSrₓCoO₄₊λ catalysts are displayed in Figure 1. These patterns correspond mainly to perovskite-type structures. However, for Pr₂₋ₓSrₓCoO₄₊λ catalysts (x = 0.2 and 1.0), diffraction peaks other than the perovskite-type ones are observed. These new peaks of low intensity are indexed to CoO, Pr₂O₃ or SrCO₃ phases. As is well known, A₂BO₄ mixed oxides of K₂NiF₄ structure can be classified specially into 2 forms, i.e. F/mmm orthorhombic-phase and I4/mmm tetragonal-phase, and the I4/mmm tetragonal-phase can be classified further into 3 phases (T, T*, T')\(^{\text{13}}\). An analogous result can also be obtained from the XRD patterns of Pr₂₋ₓSrₓCoO₄₊λ catalysts. As shown in Figure 1, for the Pr₂₋ₓSrₓCoO₄₊λ catalysts with x = 0.2 and 0.4, only the diffraction peaks attributed to the T phase of I4/mmm tetragonal-phase are observed, while with x increased to 1.0, weak peaks attributed to the discrete T* phase of I4/mmm tetragonal-phase are also detected. As the same time, the peaks due to the K₂NiF₄ structure phase get stronger and sharper as the calcination temperature increases, indicating an increase in the degree of long-range order in the perovskite-type lattice and the growing of crystallites. However, the lower the calcination temperature is, the more the T* phase appears. Moreover, we still find that the T* phase results from abundant oxygen vacancies, and more oxygen vacancy is favorable for catalytic activity. Therefore, as shown in Table 1, a suitable proportion of substitution of Sr²⁺ for Pr³⁺ results in improvements in NO conversion and selectivity to N₂, with the activity of the PrSrCoO₄ catalyst prepared by calcining at 750 °C (with a relatively large surface area of 10.16 m²/g and much nonstoichiometric oxygen (λ)-0.27) being the highest.
Table 1. Catalyst characteristics and catalytic behavior for NO reduction by CO.

<table>
<thead>
<tr>
<th>X in catalyst</th>
<th>Calcination temperature (°C)</th>
<th>Structure</th>
<th>BET surface area (m²/g⁻¹)</th>
<th>Nonstoichiometric (°C)</th>
<th>T₅₀ (°C)</th>
<th>T₉₀ (°C)</th>
<th>Sₙ₂(%) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>950</td>
<td>T,Pr₂O₃,CoO</td>
<td>2.34</td>
<td>+0.12</td>
<td>315</td>
<td>450</td>
<td>55</td>
</tr>
<tr>
<td>0.4</td>
<td>950</td>
<td>T</td>
<td>2.41</td>
<td>+0.03</td>
<td>300</td>
<td>405</td>
<td>59</td>
</tr>
<tr>
<td>0.6</td>
<td>950</td>
<td>T, T*</td>
<td>2.49</td>
<td>-0.04</td>
<td>290</td>
<td>400</td>
<td>64</td>
</tr>
<tr>
<td>0.8</td>
<td>950</td>
<td>T, T*</td>
<td>2.53</td>
<td>-0.09</td>
<td>280</td>
<td>390</td>
<td>68</td>
</tr>
<tr>
<td>1.0</td>
<td>950</td>
<td>T, T*, SrCO₃</td>
<td>2.84</td>
<td>-0.18</td>
<td>270</td>
<td>375</td>
<td>73</td>
</tr>
<tr>
<td>1.0</td>
<td>850</td>
<td>T,T*, SrCO₃</td>
<td>5.93</td>
<td>-0.22</td>
<td>265</td>
<td>360</td>
<td>77</td>
</tr>
<tr>
<td>1.0</td>
<td>750</td>
<td>T, T*, SrCO₃</td>
<td>10.16</td>
<td>-0.27</td>
<td>255</td>
<td>340</td>
<td>82</td>
</tr>
</tbody>
</table>

Figure 1. XRD patterns of the Pr₂₋ₓSrₓCoO₄₋₇ₐ catalysts: T: T phase, T*: T* phase, +:SrCO₃,*:Pr₂O₃,.:CoO.

The O₂ TPD profiles for Pr₂₋ₓSrₓCoO₄₋₇ₐ catalysts are shown in Figure 2. In all these profiles can be observed a broad and strong O₂ desorption over 600 °C (β peak), and the intensity of the O₂-desorption peak increases from sample x = 0.2 to sample x = 1.0. For substitution degree x = 0.6-1.0, the O₂-desorption peak, which shifts to ca. 350 °C (α' peak), is accompanied by a shoulder around 200 °C (α peak). Generally, the α peak exists possibly due to the ordinarily chemically adsorbed oxygen (O₂, O₂⁻) on the surface of the catalyst, and the α' peak can be related to the chemically adsorbed oxygen (O⁻) in the oxygen vacancies of the catalyst. The release of oxygen vacancies can be due to the reduction of Co³⁺:

$$2Co^{3+} + O^{2-} \rightarrow 2Co^{2+} + 1/2O_2 + V_o.$$
The β peak corresponds to the release of oxygen (O^{2-}) in the lattice of the catalyst14. This coincides with the results obtained from the XRD study.

The TPR profiles of Pr$_{2-x}$Sr$_x$CoO$_{4\pm\lambda}$ catalysts are displayed in Figure 3. All the samples show similar reduction profiles consisting of 3 sets of peaks (α, β and γ), respectively. Since both Pr$^{3+}$ and Sr$^{2+}$ are nonreducible under the conditions of the experimental section, the observed H$_2$-TPR peaks should be due to the reduction of Co$^{n+}$ species. The trivalent ion Pr$^{3+}$ at the A site is substituted by a lower valent ion Sr$^{2+}$, according to the principle of electroneutrality15. The positive charge reduced could be balanced either by the formation of higher oxidation state at the B site, i.e. Co$^{2+}$ to Co$^{3+}$, or by the formation of oxygen vacancy (Vo). The peak α corresponds to reduction of the nonstoichiometric oxygen (λ) and also to some oxygen from the perovskite-type structure. With the increase in x, the nonstoichiometric oxygens obtained from the total hydrogen consumption are 0.14, 0.07, -0.01, -0.08 and -0.16, respectively. These results are similar to those obtained by chemical analyses (Table 1). The peak β could be attributed to reduction of Co$^{3+}$ into Co$^{2+}$, and the partially reduced Pr$_{2-x}$Sr$_x$CoO$_{4\pm\lambda}$ intermediate produced still preserves the perovskite-type phase structure as a whole16. The peak γ might be attributed to the reduction of Co$^{2+}$, i.e. Co$^{2+}$ to Co0, which leads to the breakdown of the perovskite-type phase and formation of the discrete phases, Pr$_2$O$_3$, SrO, and Co. This interpretation is also supported by the XRD patterns, which show the appearance of small amounts of crystalline Co phase.

Table 2 lists the corresponding binding energies for Pr$_{3d5/2}$, Co$_{2p3/2}$, Sr$_{3d5/2}$ and O$_{1s}$ of the Pr$_{2-x}$Sr$_x$CoO$_{4\pm\lambda}$ ($x = 0.6\text{-}1.0$) and the PrSrCoO$_4$ catalysts prepared by calcinations at different temperatures. In addition, the molar percentage of cations of the 3 kinds of component elements on the surface is estimated and listed in Table 2 according to Wagner et al.17 for the Mg K$_\alpha$ source. From Table 2, it is known that
the binding energy for Pr\(_{3d5/2}\) is constant for all samples, which indicates that calcination temperature or substitution of Sr\(^{2+}\) in the perovskite-type structure does not appear to affect to a significant extent the binding energy of Pr\(_{3d5/2}\) level. The binding energy of Co\(_{2p3/2}\) displays 2 species. The binding energies of these component elements are in good agreement with those reported in the literature\(^{18-20}\). The results obtained from the XPS investigation show that the measured binding energy for Co\(_{2p3/2}\) deviates gradually from the value of Co\(^{2+}\) with the increase in x or with the decrease in calcination temperature, which indicates that the surface concentration of Co\(^{2+}\) decreases gradually and the surface concentration of Co\(^{3+}\) increases gradually at the same time. On the other hand, the Co/(Pr+Sr) surface ratios for the samples are much higher than expected, considering the nominal compositions, and they increase gradually with the increase in x or with the decrease in calcination temperature. These results suggest that enrichment of the Co cation on the surface occurs for all samples, and that the surface concentration of Co increases with the increase in x or with the decrease in calcination temperature. The \(O_{1s}\) spectra for all 5 samples include 2 signals, with the binding energy approaching 529.0 and 531.1 eV, respectively, and the binding energy approaching 531.1 eV increases with the increase in x or with the decrease in calcination temperature. The former may be ascribed to the lattice oxygen species, while the latter may originate from the chemisorption oxygen, i.e. the oxygen chemically adsorbed on oxygen vacancies\(^{21}\). The XPS analysis coincides with the results obtained from the O\(_2\)-TPD study.

Table 2. XPS Pr\(_{3d}\), Sr\(_{3d}\), Co\(_{2p}\) and \(O_{1s}\) binding energies and surface compositions of catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pr(_{3d5/2})</th>
<th>Sr(_{3d5/2})</th>
<th>Co(_{2p3/2})</th>
<th>(O_{1s})</th>
<th>Pr</th>
<th>Sr</th>
<th>Co</th>
<th>Co/(Pr+Sr) (mol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr({1.4})Sr({0.6})CoO(3)({0.96}) (950 °C)</td>
<td>933.6</td>
<td>134.1</td>
<td>780.3</td>
<td>529.0</td>
<td>26.2</td>
<td>30.3</td>
<td>43.5</td>
<td>0.77</td>
</tr>
<tr>
<td>Pr({1.2})Sr({0.8})CoO(3)({0.91}) (950 °C)</td>
<td>934.0</td>
<td>134.3</td>
<td>779.8</td>
<td>529.1</td>
<td>20.1</td>
<td>33.6</td>
<td>46.3</td>
<td>0.86</td>
</tr>
<tr>
<td>Pr({0.4})Sr({0.6})CoO(3)({0.82}) (950 °C)</td>
<td>933.9</td>
<td>133.9</td>
<td>779.5</td>
<td>528.8</td>
<td>14.3</td>
<td>36.1</td>
<td>49.6</td>
<td>0.98</td>
</tr>
<tr>
<td>Pr({0.4})Sr({0.6})CoO(3)({0.78}) (850 °C)</td>
<td>934.1</td>
<td>133.6</td>
<td>779.2</td>
<td>528.9</td>
<td>12.6</td>
<td>37.0</td>
<td>50.4</td>
<td>1.02</td>
</tr>
<tr>
<td>Pr({0.4})Sr({0.6})CoO(_3) (750 °C)</td>
<td>933.7</td>
<td>133.8</td>
<td>778.9</td>
<td>528.7</td>
<td>9.5</td>
<td>37.3</td>
<td>53.2</td>
<td>1.14</td>
</tr>
</tbody>
</table>

*Calibrated internally by the carbon deposit C\(_{1s}\) at 285.00 eV (BE).

The above results indicate that the catalytic activity for NO reduction by CO is closely related to the surface area, and the phase and oxygen vacancy of the catalyst, as well as the concentration of Co on the surface of the catalyst. The perovskite-type Pr\(_{x}\)Sr\(_{1-x}\)CoO\(_4\) catalyst prepared by calcination at 750 °C displays relatively good catalytic activity for NO reduction by CO, and is thus selected as the host catalyst for modification by platinum in the following work.

Catalytic activities for NO reduction by CO of the Pt-modified PrSrCoO\(_4\)-based catalysts

The results of NO reduction by CO over Pt/PrSrCoO\(_4\) catalysts and related systems are summarized in Table 3 by means of the 50% and 99% conversion temperatures of NO (\(T_{50}\), \(T_{99}\)) and the selectivity to N\(_2\).
By comparing the evaluation of the Pt-doping and Pt-undoping systems, it is evident that the modification of platinum to the PrSrCoO$_4$ catalyst improved the performance of the catalyst for NO reduction by CO. The T$_{50}$ and T$_{99}$ temperatures of the 3% Pt/PrSrCoO$_4$ catalyst for NO reduction by CO decrease to 225 and 258 °C from 255 and 340 °C, respectively, for Pt-free systems. Even at such a low reaction temperature, the selectivity to N$_2$ is close to 95%. In addition, the evaluation results of the catalysts with different Pt-doping amounts show that the NO conversion activity and the selectivity to N$_2$ increase initially with increasing Pt-doping amount, and approach a stable level with 3% of Pt-doping. It seems that 3% of Pt-doping is appropriate for the PrSrCoO$_4$ catalyst prepared by calcination at 750 °C. On the other hand, the conversion activity of NO and the selectivity to N$_2$ over all these γ-Al$_2$O$_3$-supported PrSrCoO$_4$ systems are lower than that of the unsupported 100% PrSrCoO$_4$ system. Moreover, the conversion activity of NO and the selectivity to N$_2$ increase, although the surface area of supported catalysts decrease greatly with the increasing PrSrCoO$_4$-loading ratio. This implies that not only the surface but also the bulk perovskite-type phase plays an important role in the catalytic activities of NO reduction by CO.

Table 3. Catalytic behavior for NO reduction by CO over Pt/PrSrCoO$_4$ catalysts and related systems.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>T$_{50}$ (°C)</th>
<th>T$_{99}$ (°C)</th>
<th>S$_{N_2}$ (%) (320 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% PrSrCoO$_4$/γ-Al$_2$O$_3$</td>
<td>325</td>
<td>483</td>
<td>48</td>
</tr>
<tr>
<td>20% PrSrCoO$_4$/γ-Al$_2$O$_3$</td>
<td>299</td>
<td>432</td>
<td>64</td>
</tr>
<tr>
<td>25% PrSrCoO$_4$/γ-Al$_2$O$_3$</td>
<td>278</td>
<td>398</td>
<td>70</td>
</tr>
<tr>
<td>33% PrSrCoO$_4$/γ-Al$_2$O$_3$</td>
<td>264</td>
<td>365</td>
<td>75</td>
</tr>
<tr>
<td>100% PrSrCoO$_4$</td>
<td>255</td>
<td>340</td>
<td>82</td>
</tr>
<tr>
<td>0.1% Pt/PrSrCoO$_4$</td>
<td>250</td>
<td>330</td>
<td>85</td>
</tr>
<tr>
<td>1% Pt/PrSrCoO$_4$</td>
<td>246</td>
<td>312</td>
<td>87</td>
</tr>
<tr>
<td>2% Pt/PrSrCoO$_4$</td>
<td>240</td>
<td>290</td>
<td>91</td>
</tr>
<tr>
<td>3% Pt/PrSrCoO$_4$</td>
<td>225</td>
<td>258</td>
<td>95</td>
</tr>
<tr>
<td>5% Pt/PrSrCoO$_4$</td>
<td>237</td>
<td>289</td>
<td>89</td>
</tr>
<tr>
<td>3% Pt/γ-Al$_2$O$_3$</td>
<td>223</td>
<td>270</td>
<td>85</td>
</tr>
</tbody>
</table>

The elementary steps of the reaction NO + CO, irrespective of its taking place on perovskites or supported noble metals, are generally accepted to proceed according to the following sequence of elementary reactions22.

\[NO_g \rightarrow NO_{ads} \quad (1) \]

\[NO_{ads} \rightarrow N_{ads} + O_{ads} \quad (2) \]

\[CO_g \rightarrow CO_{ads} \quad (3) \]

\[CO_{ads} + O_{ads} \rightarrow CO_2 \quad (4) \]

\[2N_{ads} \rightarrow N_2 \quad (5) \]

\[N_{ads} + NO_{ads} \rightarrow N_2O_{ads} \quad (6) \]

\[N_2O_{ads} \rightarrow N_2 + O_{ads} \quad (7) \]

The most important single parameter, which seems to influence the catalytic activities, is the excess or deficiency of oxygen in the perovskite-type structure. The oxygen vacancies are beneficial to the regeneration of active site for NO reduction by CO.
Characterization of the Pt-modified PrSrCoO₄-based catalysts

Figure 4b, c and d show the XRD patterns of the 3 Pt-modified PrSrCoO₄ catalysts. By contrast with the PrSrCoO₄ catalyst (see Figure 4a), besides the features ascribed to the perovskite-type structure, 2 weak peaks at 2θ = 26.05 and 42.70 are observed, which become more pronounced as the Pt-doping percentage increases from 1% to 3%. This is in agreement with the known 2θ values for PtCl₄, and thus can be attributed to the crystallite phase of PtCl₄. In addition, for 3% Pt/PrSrCoO₄ and 5% Pt/PrSrCoO₄ catalysts, peaks at 39.80, 46.30 and 67.55, which are ascribed to the XRD characteristic peak of the Pt phase, are identified in Figure 4c and d. However, there is no conclusive evidence for the existence of a Pt crystallite phase on the catalyst of 1% Pt-modified PrSrCoO₄.

![XRD patterns](image)

Figure 4. XRD patterns of the catalysts T: T phase, T*: T* phase, +:SrCO₃, *:PtCl₄, #: Pt. a: PrSrCoO₄; b: 1% Pt/PrSrCoO₄; c: 3% Pt/PrSrCoO₄; d: 5% Pt/PrSrCoO₄.

The results of the O₂-TPD investigation (in Figure 5) show that an obvious difference existed between the 2 catalysts doping and undoping by Pt in their adsorption/desorption behavior to oxygen. For the 3% Pt/PrSrCoO₄ catalyst, 2 much stronger peaks at 80 and 220 °C are observed besides the 200, 375 and over 600 °C peaks, compared to that of the Pt-free system PrSrCoO₄, while the 200, 375 and over 600 °C peaks for the Pt-doping systems are very close to that for the Pt-free system in position and intensity. They probably originate from desorption of the same kind of strongly adsorbed oxygen species. The strong peaks at 80 and 220 °C for the Pt-doping system are evidently related to the doping of H₂PtCl₆ in PrSrCoO₄. Therefore, the O₂-TPD results clearly indicate that the doping of H₂PtCl₆ in the PrSrCoO₄ catalyst would lead to enhancement of adsorbability of the catalyst towards oxygen, and result in generating plenty of oxygen ad-species that can be desorbed, meaning that the quantity of adsorbed and nonstoichiometric oxygen species being able to participate in the NO reduction by CO would greatly increase.
Surface Properties and Catalytic Performance of..., H. ZHONG, X. ZENG

Figure 5. TPD patterns of the PrSrCoO$_4$ and 3% Pt/PrSrCoO$_4$ catalysts.

The TPR profiles of the PrSrCoO$_4$ and 3% Pt/PrSrCoO$_4$ catalysts are displayed in Figure 6. Comparing with that of the Pt-free system PrSrCoO$_4$, the reduction profile of the 3% Pt/PrSrCoO$_4$ catalyst is more one peak at 130 °C, which could be attributed to reduction of PtO$_2^{2+}$. At the same time, the high temperature (810 °C) reduction peak of the 3% Pt/PrSrCoO$_4$ catalyst, which leads to the breakdown of the perovskite-type phase, is unchanged in position and shape, compared with that of the PrSrCoO$_4$. However, the downshift of the low temperature (290 and 400 °C) reduction peaks and the increment of their peak area are both apparent. Through the above comparison, we think that the doping of Pt greatly improved the low-temperature reducibility of the perovskite-type PrSrCoO$_4$, remarkably increasing the content of low-temperature-reducible Co$^{3+}$ species.

Figure 6. TPR patterns of the PrSrCoO$_4$ and 3% Pt/PrSrCoO$_4$ catalysts a: PrSrCoO$_4$; b: 3% Pt/PrSrCoO$_4$.

Figure 7 shows the XPS spectra of Co$_{2p}$ of the PrSrCoO$_4$ and 3% Pt/PrSrCoO$_4$ catalysts. There are 2 peaks at 780.8 and 795.5 eV for the both samples, respectively. The former was evidently due to Co$^{2+}$ (2p). The latter could be ascribed to Co$^{3+}$ (2p)20. The peak area at 795.5 eV for 3% Pt/PrSrCoO$_4$ catalyst is higher than that of PrSrCoO$_4$ catalyst, which indicates that the surface concentration of Co$^{3+}$ increases after the doping of H$_2$PtCl$_6$ in the PrSrCoO$_4$. In addition, for the sake of clarity the influence of doping Pt onto PrSrCoO$_4$, the O$_{1s}$ curves of PrSrCoO$_4$ and 3% Pt/PrSrCoO$_4$ are shown in Figure 8. The O$_{1s}$ curves of the 2 catalysts include 2 peaks at 529.0 and 531.1 eV, respectively, and the peak areas of 3% Pt/PrSrCoO$_4$ approaching the binding energy (531.1 eV) are higher than that of PrSrCoO$_4$. Since the peak of O$_{1s}$ curves approaching the binding energy (531.1 eV) may originate from the oxygen chemically adsorbed on oxygen vacancies, the oxygen vacancies of 3% Pt/PrSrCoO$_4$ are more than those of PrSrCoO$_4$. On the other hand, for the sake of even more clarity the influence of doping Pt onto PrSrCoO$_4$, the Pt (4f)-XPS spectra of the
Pt/PrSrCoO₄ catalysts are shown in Figure 9, in which 2 peaks at 75.5 and 71.2 eV are observed. The peak at 71.2 eV is somewhat strengthened with the increase in Pt-doping percentage from 3% to 5%. According to the literature²⁴, and the above XRD characterization of the Pt/PrSrCoO₄ catalysts, the peak observed at 71.2 eV is assigned to Pt (4f) of metallic platinum species. From the fact that the binding energy of the main peak observed at 75.5 eV was consistent with that assigned to Pt (4f) of PtCl₄ in the literature²⁴, we suggest that most of the Pt species on the surface layer of the Pt-doping PrSrCoO₄ system is Pt⁴⁺. These results indicate that the catalytic activity for NO reduction by CO is closely related to the oxygen vacancy of the catalyst, as well as the concentration of Co³⁺ on the surface of the catalyst.

![Figure 7. XPS patterns of Co₂p of the PrSrCoO₄ and 3% Pt/PrSrCoO₄ catalysts.](image)

![Figure 8. XPS patterns of O1s of the PrSrCoO₄ and 3% Pt/PrSrCoO₄ catalysts.](image)

![Figure 9. XPS patterns of Pt₄f of the Pt/PrSrCoO₄ catalysts a: 1% Pt/PrSrCoO₄; b:3% Pt/PrSrCoO₄; c:5% Pt/PrSrCoO₄.](image)
Acknowledgments

The work described above was financed by a grant from Jinggangshan University and supported by the Science and Technology Bureau of Jiangxi, China (Project No. 2006) and the Science and Technology Department of Jian, Jiangxi Province of China (Project No. 20052817). The authors greatly appreciated discussions with the group working on this project.

References