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1. Introduction
Historically, adult cardiac muscle was believed to be 
terminally differentiated, with little potential for renewal. 
In contrast, an early report in 1956 described myocardial 
cell division and some degree of regeneration in young rats 
(between 4 and 7 days of age) in response to burn injury 
(Robledo, 1956). Subsequently, several lower vertebrates, 
such as the frog (Rumyantsev, 1973), newt (Oberpriller and 
Oberpriller, 1974), zebrafish (Poss et al., 2002), and axolotl 
(Vargas-González et al., 2005; Cano-Martínez et al., 2010) 
were found to exhibit some capacity to regenerate severely 
injured cardiac tissue. More recently, it was demonstrated 
that neonatal mice also exhibit a robust regenerative 
response to cardiac injury (Porrello et al., 2011b). Many 
organ systems exhibit ongoing renewal throughout adult 
life in mammals: the skin, gut, liver, and blood. However, 
despite its critical role in organismal homeostasis, the adult 
mammalian heart does not efficiently regenerate naturally. 

Since heart failure is one of the largest causes of 
death in the world, considerable effort has been devoted 
to identifying potential ways to stimulate cardiac 
regeneration in adult humans. In this review, we discuss 
the current state of cardiac regeneration with respect to 
natural differences across phylogeny and ontogeny, as 
well as efforts to synthetically induce cardiac regeneration 
in mammals.

2. Natural regenerative mechanisms
2.1. Lower vertebrates
Several lower vertebrates are known to retain the ability to 
efficiently regenerate injured myocardial tissue, in addition 
to central nervous system and appendages, throughout 
adulthood. These include some urodele amphibians, such 
as the newt (Witman et al., 2011) and axolotl (Cano-
Martínez et al., 2010), as well as zebrafish (Poss et al., 2002; 
Jopling et al., 2010; Kikuchi et al., 2010) and Polypterus 
senegalus (Kikuchi et al., 2011) (Figure). A phylogenetic 
tree would suggest that the ability to regenerate cardiac 
tissue may have been present in a common ancestor 
between these species and mammals.  

Several theories have been proposed to explain the 
source of cardiomyocyte replacement in these regenerative 
organisms, including circulating stem cells, resident stem/
progenitor cells, and the dedifferentiation, proliferation 
and redifferentiation of mature cells. There seems to be 
a growing consensus that preexisting cardiomyocytes are 
the predominant source for new myocardium in zebrafish 
heart regeneration (Jopling et al., 2010; Kikuchi et al., 
2010) (in addition to neonatal mice, discussed below). 
Jopling et al. (2010) and Kikuchi et al. (2010) both used 
genetic lineage tracing experiments to track the fate of 
cardiomyocytes during regeneration in an apical resection 
model. Jopling et al. (2010) labeled cardiomyocytes 48 h 
after fertilization by tamoxifen pulsing transgenic cmlc2a-
Cre-Ert2;cmlc2a-LnL-GFP zebrafish and performed 20% 
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apical resection in adulthood (3 months old). A fibrin clot 
was observed at 7 days post amputation (dpa), followed by 
expansion of predominantly GFP+ positive cardiomyocytes 
into the resected area at 14 and 21 dpa, leaving only a small 
scar. BrdU incorporation in cardiomyocytes increased 
~4-fold in resected hearts compared to the control, 
with highest activity near the resected tissue. Scanning 
electron micrographs showed significant cardiomyocyte 
dedifferentiation and loss of sarcomeric organization 
in regenerating myocardium. Furthermore, cell cycle 
regulator plk1 was upregulated during and was required 
for regeneration.

Kikuchi et al. (2010) found that gata4 promoter 
activity (using a transgenic reporter, gata4-GFP) increased 
significantly in cardiomyocytes in the compacted 
myocardium at 3–7 dpa, and these cells migrated into 
the wound site by 14 dpa. They used a transgenic gata4-
ERCreER;β-actin-LoxP-DsRed-STOP-loxP-EGFP zebrafish 
line to track the fate of Gata4+ cardiomyocytes during 
regeneration. Pulsing with tamoxifen at 4–7 dpa (before 
Gata4+ cardiomyocytes were observed in the wound 
site) revealed that Gata4+ cardiomyocytes migrated from 
outside the wound site and expanded to generate new 
myocardium. Since noncardiomyocytes could potentially 

Figure. Phylogenetic relationship between mammals and organisms that exhibit significant cardiac 
regeneration. Note that parsimony dictates ancient regenerative ability within early Vertebrata and loss 
within Amniota where oxidative stress (Puente et al., 2014) and immune complexity (Aurora et al., 
2014) become potentially relevant to regeneration. The percent of mononucleate cardiomyocytes in 
adults is shown at right for Homo sapiens (Olivetti et al., 1996), Mus musculus (Soonpaa, Field, 1994), 
Notophtha viridescens (Bettencourt-Dias et al., 2003), and Danio rerio (Wills et al., 2008).  
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express Gata4+ and subsequently differentiate into 
cardiomyocytes, they then used a specific cmlc2 driven Cre 
reporter line to show that new myocardium was indeed 
derived from preexisting cardiomyocytes.

These above studies provide convincing evidence that 
regeneration in zebrafish occurs through dedifferentiation 
and proliferation of preexisting cardiomyocytes, similar to 
mechanisms seen in axolotl limb regeneration (Kragl et al., 
2009; Wu et al., 2015). However, the humoral and molecular 
signaling mechanisms that allow cardiomyocytes to 
proliferate in lower vertebrates are still being unraveled.

Recently, the role of mitochondria and oxidative 
damage in controlling cardiomyocyte proliferation and 
cardiac regeneration is gaining appreciation (Puente et al., 
2014). It seems that high levels of radical oxygen species 
(ROS, such as from elevated mitochondrial respiration) 
lead to a DNA damage response that prevents cell division 
and signals cell cycle exit. The low metabolic demand 
and hypoxic environment of zebrafish seems to curtail 
the DNA damage response and enable cardiomyocyte 
proliferation. Retinoic acid signaling in the endocardium 
and epicardium is also thought to play a critical role 
in directing cell migration during zebrafish heart 
regeneration and has been reviewed elsewhere (Masters 
and Riley, 2014). 

Although the exact molecular cues that drive cardiac 
regeneration are still being delineated, it is tempting 
to hope that the efficient regeneration seen in these 
organisms indicates a quiescent primitive regenerative 
mechanism may exist in a greater portion of Animalia, 
including humans, which merely needs reawakening. 
Parsimony amongst phylogenetic relationships between 
urodele amphibians, zebrafish, and mammals suggests 
that regeneration was present in a common ancestor, 
but was lost somewhere in Amniota in adults (Figure). 
Furthermore, it seems that neonatal mice regenerate 
via a mechanism similar to that of zebrafish (Porrello 
et al., 2011b). If future work shows via lineage tracing 
experiments that axolotl and newt hearts also regenerate 
via dedifferentiation and proliferation of preexisting 
cardiomyocytes, it would support the hypothesis that 
these regenerative species use a conserved regenerative 
program, which may be accessible in adult humans.  
2.2. Mammals
Adult mammals are not known to efficiently regenerate 
injured myocardium. However, several studies have shown 
a very modest contribution of preexisting cardiomyocytes 
to new mononucleate myocardial cells, both in the normal 
and injured adult mammalian heart (Senyo et al., 2013). 

Like zebrafish and urodele amphibians, neonatal 
(up to postnatal day 7) (Porrello et al., 2011b) and fetal 
(Drenckhahn et al., 2008) mice exhibit a remarkable 
ability to regenerate myocardium after severe injury. As 

in zebrafish, preexisting cardiomyocytes make a major 
contribution to regenerated myocardium in neonatal 
mice (Jopling et al., 2010; Kikuchi et al., 2010). However, 
shortly after birth, mice experience a drastic decline in 
regenerative capacity, as the majority of cardiomyocytes 
exit the cell cycle. It should be noted that some controversy 
remains over the extent of regeneration in mouse 
neonates that concerns not only surgical techniques, 
but also the definition of regeneration versus enhanced 
healing (Andersen et al., 2015). Regeneration has been 
previously distinguished from wound repair as a process 
that results in complete restoration of gross normal 
tissue architecture and function (Clark et al., 1998). 
Regeneration typically involves progenitors originated 
from stem cells or dedifferentiated from mature cells 
that lead to the formation of new tissue. Nonregenerative 
healing has been proposed to proceed through a distinct 
mechanism, characterized by a fibrin clot that leads to scar 
formation with altered extracellular matrix composition 
and a reduction in functional parenchyma. It is possible 
that a continuum between the two extremes is responsible 
for different degrees of regeneration that can occur across 
phylogeny and ontogeny.
2.2.1. Humans
The high incidence of heart failure in aging humans 
underscores the lack of significant regenerative capacity. 
However, despite historical skepticism, recent evidence 
reveals that some degree of cardiomyocyte renewal does 
exist in the aging human. As in mice, estimates of human 
cardiomyocyte turnover vary (Yacoub, 2015), though most 
reports point toward a level consistent with the inability of 
efficient human heart regeneration.  

Perhaps the most compelling evidence to support 
myocardial turnover in humans was revealed in a recent 
radiometric dating study (Bergmann et al., 2009). A 
period of heavy nuclear testing between 1955 and 1963 
resulted in massive 14C radioisotope pulse labeling on 
earth. This allowed Bergmann et al. (2009) to calculate 
the rate of cardiomyocyte turnover in humans based on 
the level of isotope incorporation in myocardial samples. 
To reduce the contamination of sorted cardiomyocytes 
with noncardiomyocytes, for use in biochemical and 
radioisotope assays, the authors developed a cardiomyocyte 
nuclei sorting method using nuclear localized cardiac 
troponin I and T as markers, resulting in ~96% purity. 
From sorted nuclei, they determined that the fraction of 
multiploid (>2n) cardiomyocytes increased drastically from 
0 to 10 years and then remained unchanged throughout 
life, consistent with other reports (Olivetti et al., 1996; 
Mollova et al., 2013). Using a mathematical model, they 
also estimated the rate of cardiomyocyte turnover to be 1% 
per year at 20 years of age, declining to 0.45% by 70 years 
of age. At this estimation, the human heart (with ~1 billion 



JUDD et al. / Turk J Biol

268

cardiomyocytes (Porrello and Olson, 2014)) creates up to 
10 million new cardiomyocytes per year. Furthermore, 
Bergmann et al. estimated that approximately 45% of 
cardiomyocytes in the heart are renewed throughout 
human life. Interestingly, they reported that the human 
heart is homogeneous in proliferative potential, with no 
identifiable subset of cells containing a disproportionate 
ability to renew; this is in contrast to the preadolescent 
burst of cardiomyocyte proliferation in mice occurring 
predominantly in the subendocardium (Naqvi et al., 2014). 
This study was significant in that it provided quantitative 
insight into the ability of the healthy human heart to 
renew functional cardiomyocytes. However, radioisotope 
labeling does not reveal the source of new cardiomyocytes, 
leaving open an important question that could lead to 
novel insights in therapeutic human heart regeneration.

Kühn and colleagues developed a cardiomyocyte 
isolation method involving collagenase digestion 
after formaldehyde fixation of flash-frozen, healthy, 
nonfibrotic human myocardium samples (Mollova et 
al., 2013). This enabled accurate and unambiguous 
quantitation of cardiomyocyte-specific proliferation 
via immunofluorescence imaging without the need for 
confocal microscopy. Laser scanning cytometry (LSC) 
showed that infant hearts (up to 1 year old) contained 
~0.04% cardiomyocytes in M-phase (phosphorylated 
histone 3 (PH3)-positive), which decreased to 0.009% 
between 10 and 20 year olds. Confocal analysis showed a 
similar pattern with 0.012% PH3-positive cardiomyocytes 
in the first year of life, decreasing with age. Both methods 
showed detectable PH3 staining after 40 years old. The 
majority of mitotic cardiomyocytes were found to be 
mononucleate, consistent with observations in rats (Kühn 
et al., 2007), cats (Chen et al., 2007), and mice (Bersell et 
al., 2009). Confocal analysis of thick myocardial sections 
indicated ~0.016% of 1-year-old cardiomyocytes were in 
cytokinesis (MKLP1-positive), a surprisingly high fraction 
of the total mitotic cardiomyocytes based on PH3 staining. 
Cytokinesis declined with age (0.01% and 0.005% for 2–10 
and 10–20 years old, respectively) and was undetectable 
in human samples beyond 20 years of age. Interestingly, 
Mollova et al. (2013) found that the percentage of 
mononucleate cardiomyocytes did not change between 
the first year of life and in adults, both ~65%, consistent 
with a prior report in adult humans (Olivetti et al., 
1996). However, using LSC, they found that ploidy 
increased in mononucleate cardiomyocytes, consistent 
with the observation that cycling cardiomyocytes were 
predominantly mononucleate and the consensus that aging 
cardiomyocytes are able to undergo genome replication; 
however, karyokinesis seems to be inhibited. Furthermore, 
they used optical dissection to determine that between the 
ages of 0–1 years and 20 years, the number and size of 

cardiomyocytes increased by 3.4- and 8.6-fold, respectively, 
consistent with the preadolescent burst of cardiomyocyte 
proliferation seen in mice (Naqvi et al., 2014).  

Collectively, these results provide strong evidence of cell 
cycle activity in human cardiomyocytes and the generation 
of new cardiomyocytes after birth. However, without 
human lineage tracing experiments, the major source of 
new cardiomyocytes in humans is still unclear. Considering 
that neonatal mice and zebrafish both regenerate via 
cardiomyocyte division, the same mechanism must be 
considered as a potential major source of cardiomyocyte 
turnover in humans, but it cannot be ruled out that other 
sources, i.e. stem/progenitor cells, exist.

Regardless of the source of new cardiomyocytes in 
humans, the existence of cardiomyocyte renewal and of 
cardiomyocyte cell cycling are promising findings that 
support potential for regenerative strategies in humans. 
To this end, it is interesting to note that several different 
remodeling modalities are known to exist in humans, 
underscoring the plasticity of the myocardium for 
tissue reorganization. For example, in cases of dilated 
cardiomyopathy (DCM), human myocardium is known 
to undergo remodeling distinct from that observed in 
ischemic injury, where DCM is characterized by a reversion 
to dedifferentiated, fetal-like cardiomyocyte phenotypes, 
reminiscent of neonatal mouse and zebrafish heart 
regeneration. Furthermore, some evidence for reverse 
remodeling and increased cardiomyocyte cell cycling is 
seen in patients with left ventricular assist devices (Canseco 
et al., 2015). This could mean that the adult human heart 
does indeed have the intrinsic ability to regenerate, but 
that this process is merely inhibited by other processes, 
such as fibrosis, or the constant mechanical and oxidative 
demands of the adult human heart. An enormous body 
of work describes efforts to induce cardiac regeneration 
in animal models with the ultimate goal of translating 
findings into human therapy. A summary of recent key 
findings is presented here.

3. Toward induced regeneration
3.1. Undifferentiated cells with cardiac potential
Numerous studies have looked at the potential of injected 
cells to repair cardiac tissue. Most of these include cells 
with progenitor and/or stem characteristics. Due to the 
initial promise of these cellular therapies, an abundance 
of clinical trials were conducted using various stem and 
progenitor cells. Many of these trials, however, yielded 
mixed results and controversial conclusions (Nowbar et 
al., 2014). We discuss below a small sample of the literature 
on cardiac stem cell therapy and refer our readers to other 
available reviews on this well-covered subject (Bollini et 
al., 2011; Garbern and Lee, 2013; van Berlo and Molkentin, 
2014).
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The movement for cardiac stem cell therapy was 
motivated by the thought that stem/progenitor cells might 
be responsible for natural mechanisms of cardiac repair 
and renewal. Many earlier works focused on either bone-
marrow derived or cardiac resident Lin-/c-kit+ cells. Despite 
initial promise, their contribution to new cardiomyocytes 
or cardiac repair in general has been controversial (van 
Berlo and Molkentin, 2014).

In pursuit of a possible source of new cardiomyocytes 
after injury in adult mammals, a study by Hsieh et al. 
(2007) indirectly implicated potential resident cardiac 
stem cells. They used α-MHC-MerCreMer;ZEG transgenic 
mice to pulse label cardiomyocytes with permanent GFP 
expression, followed by a chase period to observe the 
source of turnover. MI resulted in a greater than 100-
fold increase in Kit expression in the myocardium (from 
<0.005% to 0.75 ± 0.13%). In response to MI or pressure 
overload but not in control mice, the authors observed 
a reduction in the number of GFP+ cardiomyocytes, 
indicating a source of de novo cardiomyocytes other 
than preexisting cardiomyocytes. Since no off-target 
GFP expression in bone marrow cells or in KIT+ or SCA-
1+ cells was found, stem cells were likely not responsible 
for cardiomyocyte renewal in the normal aging mouse. 
TUNEL staining showed no enhanced susceptibility to 
apoptosis within the GFP+ population compared to GFP- 
cardiomyocytes in response to MI or pressure overload. 
Although this report provides strong evidence for a lack 
of proliferative capacity of α-MHC+ cardiomyocytes in 
adult mouse hearts after injury, it does not exclude the 
possibility that α-MHC- cardiomyocytes could reenter the 
cell cycle (e.g., β-MHC+, fetal-like cardiomyocytes).

The contribution of injected cells to cardiac repair in 
general is controversial, but may include some degree of 
engraftment and/or paracrine effects. Although ES cell-
derived cardiac therapies have shown promise, there is 
concern over the potential for teratoma formation (van 
Berlo and Molkentin, 2014). Additionally, Qiao et al. used 
positron emission tomography and magnetic resonance 
imaging to show that embryonic stem cells can engraft 
into cardiac tissue, but at very low rates (Qiao et al., 
2009). Along with other studies reporting similarly poor 
engraftment, this suggests that stem cells may not have 
a high potential for cardiac regeneration. As mentioned 
above, bone-marrow derived cells (BMCs) have been 
widely explored as a potential source of regenerative 
engraftment in numerous clinical trials. However, 
Hofmann et al. showed that only a small percentage 
of BMCs are retained in the human myocardium after 
intracoronary delivery (Hofmann et al., 2005). A large 
metaanalysis of clinical trial data illustrated a correlation 
between discrepancies and ejection fraction improvement, 
suggesting that BMCs may not provide effective therapy 

for cardiac failure. On the other hand, Korf-Klingebiel 
et al. discovered a paracrine factor (C19orf10), secreted 
by BMCs, that appears to induce cardiac repair (Korf-
Klingebiel et al., 2015), supporting the hypothesis for 
paracrine-mediated therapeutic effects by BMCs.

Cardiospheres are an in vitro phenomenon, whereby 
culturing cardiac tissue explants under nonadherent 
conditions gives rise to proliferative cardiac stem cell 
niches (Li et al., 2010). Reimplantation of cardiospheres 
in vivo via intracoronary injection may improve ischemic 
recovery via paracrine effects. In CAUDUCEUS human 
clinical trials, cardiosphere treatment safely reduced scar 
size and increased viable myocardium after MI (Malliaras 
et al., 2014). However, no definitive improvements in 
ejection fraction, cardiac output, or quality of life were 
observed.

Several other works have looked at the role of 
endogenous cardiac stem cells in cardiac repair and the 
delivery of exogenous progenitor sources to induce repair 
in adult mammals. However, there is a growing consensus 
that progenitor cells do not make a major contribution 
to regenerating myocardium (reviewed in van Berlo and 
Molkentin, 2014).
3.2. Proliferation of differentiated cardiomyocytes
Cardiomyocytes are the contractile cells responsible 
for the pumping function of the heart. Although their 
significant contribution to myocardial repair in neonatal 
mice and adult zebrafish has only recently been definitively 
shown, the regenerative potential of cardiomyocytes has 
been pondered for decades. As such, much effort has 
been devoted to stimulating cardiomyocyte proliferation 
with the hope of replacing lost contractile tissue after 
injury, such as in myocardial infarction. The generally 
strong resistance of mammalian cardiomyocytes to cell 
cycle reentry has been partially attributed to epigenetic 
silencing of cell cycle regulators (Sdek et al., 2011) through 
retinoblastoma (Rb) and p130 signaling. Several early 
reports characterized cell cycle checkpoints and control 
nodes in cardiomyocytes (reviewed in Pasumarthi, 2002). 
More recent efforts have focused on the roles of Hippo 
signaling and the DNA damage response in the regulation 
of cardiomyocyte proliferation.

Since cardiomyocyte cell division is an important 
event in heart development and regeneration, there has 
been significant interest in the development of detection 
methods to monitor how cardiomyocytes divide. Clonal 
analysis was performed using a tamoxifen-inducible 
mosaic analysis with double markers (MADM) system 
to provide evidence of symmetric division of preexisting 
MYH6-expressing cardiomyocytes in adult mice (Ali 
et al., 2014). Analysis of P12 mice (induced P2-P8) 
revealed that only 10% of labeled cells were single-
labeled, showing that cell division during this period was 
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inefficient. Furthermore, this study showed that daughter 
cardiomyocytes had a low capacity for renewal, due to the 
scarcity of clonal expansion.
3.2.1. Hypoxia
The impetus for cardiomyocyte cell cycle exit is not well 
understood, but recent evidence has implicated oxidative 
stress as a contributing factor (Puente et al., 2014). It was 
observed that at birth, mice undergo a transition from a 
hypoxic environment (~30 mmHg) to a relatively hyperoxic 
environment (~100 mmHg). Furthermore, regenerative 
zebrafish are adapted to hypoxic conditions, where 
they can tolerate oxygen pressures down to 15 mmHg. 
Moreover, there is a shift in metabolism from anaerobic 
glycolysis to mitochondrial oxidative phosphorylation, 
where ROS are abundantly generated by the electron 
transport chain in mitochondria. This led Puente et al. 
(2014) to identify ROS and the DNA damage response 
as a stimulus for cardiomyocyte cell cycle exit. Strikingly, 
hypoxic conditions, ROS scavenging, or DDR inhibition 
all increased the postnatal window of cardiomyocyte 
proliferation. Consistently, hyperoxic conditions and ROS 
generators led to premature cell cycle arrest. 

Interestingly, hypoxic signaling may be a generalizable 
therapeutic strategy, as several recent reports have utilized 
hypoxic conditions to increase the “stemness” of various 
progenitor cells ex vivo, including cardiospheres (Tan et 
al., 2015).
3.2.2. Thyroid signaling
Recently, an astute observation of a discrepancy between 
heart growth and cardiomyocyte size led to the discovery 
of a burst of predominantly subendocardial cardiomyocyte 
proliferation around P15 in mice (Naqvi et al., 2014). It 
was found that thyroid signaling was responsible for this 
massive and transient mitotic event, potentiated through 
the IGF-1/AKT signaling axis. The final cardiomyocyte 
number increased to 140% by P18. Regeneration from 
MI injury was higher than that of P21 mice, but could not 
match that of P2 mice. It will be interesting to see how 
oxidative stress plays a role in the proliferative adolescent 
burst at P15.

In the above study, the percentage of binucleated 
cardiomyocytes decreased from ~86% to ~71%, which 
is inconsistent with a previous report that only a slight 
decrease of binuclear cells from ~95% to ~88% was observed 
during this time window (Soonpaa et al., 1996). It would be 
important for other groups to repeat the same analyses and 
reconcile the discrepancy. Nevertheless, this event might 
have been missed in most prior studies, perhaps due to the 
transient nature and short labeling periods.  
3.2.3. Meis1
Meis1 is a homeodomain transcription factor that was 
shown to be critical for heart development (Paige et al., 
2012; Wamstad et al., 2012). Recently, Meis1 was shown 

to be a negative regulator of the cardiomyocyte cell cycle. 
Deletion of Meis1 resulted in an extension of the neonatal 
cardiomyocyte proliferative window in mice, whereas 
overexpression inhibited neonatal heart regeneration 
and cardiomyocyte proliferation (Mahmoud et al., 
2013). Interestingly, Meis1 overexpression reduced the 
regenerative response to P1-2 MI (left ventricular ejection 
fraction (EF) ~69% vs. ~93% in controls at P21), but had 
no effect on EF in uninfarcted heart. The mechanism could 
be through transcriptional activation of CDK inhibitors 
p15, p16, and p21 by Meis1, as measured in isolated 
cardiomyocytes (Mahmoud et al., 2013). However, the 
effect of Meis1 deletion on adult cardiac regeneration was 
not reported.
3.2.4. miRNAs
MicroRNAs (miRNAs) have been shown to regulate gene 
expression in a number of different contexts. miRNA 
signaling is required for normal cardiac function (Chen et 
al., 2008; Rao et al., 2009). miR-1 (Zhao et al., 2005, 2007; 
Eulalio et al., 2012) and miR-33 (Liu et al., 2008) as well 
as some miR-15 family (Porrello et al., 2011a) miRNAs 
have been shown to reduce cardiomyocyte proliferation. 
On the other hand, human miRNA hsa-miR-590 and 
hsa-miR-199a were found in a large screening to increase 
cardiomyocyte proliferation in neonatal rats in vivo 
(Eulalio et al., 2012). Treatment with AAV-miR (hsa-
miR-590 or hsa-miR-199a) at day 0 after MI resulted in 
nearly complete recovery of EF (~52%–58%), whereas 
control injections experienced drastic reductions (~45%) 
compared to normal (~58%) up to 60 days after MI. Infarct 
scar size was 10%–15% in treated mice compared to 27%–
32% in control mice with MI (Eulalio et al., 2012). Left 
ventricular wall thickness also increased to near normal 
levels with miR treatment (Eulalio et al., 2012).

Belmonte and colleagues identified a conserved 
miRNA program (miR-99/100 and Let7a/c) that is 
upregulated in adult zebrafish hearts, but suppressed 
in early development and during regeneration when 
cardiomyocytes are actively dividing (Aguirre et al., 
2014). miR-99/100 and Let7a/c were found to be inversely 
correlated with the expression of their targets, fntβ and 
smarca5. Knockdown of fntβ or smarca5 or treatment with 
miR-99/100 mimics reduced ventricle size in development, 
which could be rescued with modified fntβ and smarca5 
mRNA. Furthermore, treatment with miR-99/100 mimics 
reduced cardiac regeneration in zebrafish following apical 
resection, with an increase in scarring and a reduction 
in BrdU staining. The miR-99/100 and Let7a/c program 
was also found to be upregulated during development in 
both humans and mice, with a corresponding decrease in 
fntβ and smarca5, consistent with a contemporary study 
of cardiomyogenesis (Coppola et al., 2014). Interestingly, 
the miR-99/100 program was not activated after MI 
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in adult mice, potentially contributing to their lack of 
cardiac regeneration. Knockdown of miR-99/100 and 
Let7a/c in cultured adult murine cardiomyocytes resulted 
in an increase in fntB/smarca5. Elevated GATA4 and 
PCNA expression was found in response to miR-99/100 
in cultured human cardiomyocytes, suggesting potential 
dedifferentiation and new DNA synthesis. However, no 
direct evidence of cytokinesis was shown in adult human 
or mouse cardiomyocytes. Organotypic slice cultures 
exposed to lentivirus-mediated delivery of miR-99/100 
and/or miR-Let7a/c showed sarcomeric disassembly 
and reexpression of GATA4, as well as increased PH3. 
However, the age of the mouse donors for slice cultures was 
not reported. An LAD ligation model was used to test the 
effect of miR-99/100 and Let7a/c expression (delivered by an 
AAV2/9 vector injected immediately following ligation) on 
healing after myocardial infarction in adult mice. Ejection 
fraction improved from ~45% (MI+ control) to ~60% (MI+ 
miRNA) by 14 days post injection and remained stable 
through 90 days post injection; sham surgery displayed EF 
of ~70%–75%. This work shows some promising findings 
in cardiac functional improvement, but the mechanism of 
recovery from myocardial injury is unclear.

Tian et al. (2015) identified a fetally expressed 
miRNA controller (miRNA cluster 302-367) of the 
Hippo pathway that was important in early cardiac 
development and cardiomyocyte proliferation (Tian et 
al., 2015). Deletion of miR-302-367 resulted in a lack of 
proliferation and differentiation during development, 
whereas overexpression resulted in cardiomegaly and 
thickened myocardium by embryonic day 18.5. Cell 
size was significantly lower at P20 with miR-302-367 
overexpression using Nkx2.5cre as a driver. Microarray 
revealed increased Wnt signaling and a reduction in 
apoptosis at P14, as well as inhibition of differentiation 
(e.g., c-Kit expression) at P14 and P23. Furthermore, 
Hippo-negative regulators Mob1b, Lats2, and Mst1 were 
downregulated at E18.5 with miR-302-367 overexpression 
and upregulated at E12.5 with miR-302-367 deletion. This 
effectively regulated nuclear localization of Hippo effector 
YAP, resulting in increased proliferation of neonatal 
cardiomyocytes with miR-302-367 overexpression. 
Prolonged expression of miR302-367 in adult hearts 
compromised heart function, but transient expression 
aided recovery after MI. Specifically, treatment with miR-
302b/c mimics at days 2–8 post MI resulted in a reduction 
in fibrosis and an increase in EF (~52%) compared to the 
MI-operated, no-treatment control (~32%), but still short 
of the sham-operated control (70%). End diastolic volume 
returned to normal, but end systolic volume of the miR-
203b/c mimic-treated group (~28 µL) was still higher than 
that of the sham (~20 µL), but significantly lower than that 
of the no-treatment control (~97 µL).

3.2.5. Hippo signaling
The importance of Hippo signaling in heart regeneration 
has recently been reported in several studies (reviewed in 
Lin and Pu, 2014). The Hippo pathway is one of 2 major 
pathways (in addition to BMP) known to control organ 
size in Drosophila (Affolter and Basler, 2007; Dong et al., 
2007; Pan, 2010). Heallen et al. (2011) found that Hippo 
also controls heart size and cardiomyocyte proliferation 
in mice. Conditional deletion (Tg-Nkx2.5-Cre) of Salv 
(Salv CKO mice) reduced phospho-YAP, a downstream 
signaling effector of the Hippo pathway, and resulted in 
cardiomegaly, while maintaining cardiomyocyte size. Salv 
CKO mice demonstrated increased mitotic cardiomyocytes 
(4% PH3+ vs. 1% in wt.) and increased nuclear β-catenin 
(42.5% nuclear vs. 12% in wt) at E12.5. Heterozygosity 
for β-catenin reduced the effect of CKO Salv deletion on 
cardiomyocyte proliferation, supporting Wnt signaling as 
the mechanism for Hippo-mediated cell cycle repression. 
These results clearly demonstrated that Hippo and Wnt 
signaling play a major role in controlling cardiomyocyte 
proliferation in the developing mouse, but its influence in 
adult mice was still unclear. 

Martin and colleagues subsequently showed that Hippo 
signaling could be leveraged to stimulate cardiomyocyte 
proliferation in healthy adult mice and enhanced recovery 
from cardiac injury in adult mice (Heallen et al., 2013). The 
idea that Hippo signaling may be related to regenerative 
ability was supported by the levels of phosphorylated YAP 
in heart extracts, which increased nearly 3-fold in mice 
from P2 to P21, inversely correlating with regenerative 
ability. Conditional deletion of Salv and Lats 1/2 in healthy 
mice resulted in enhanced EdU incorporation, as well as 
Ki67 and Aurora B kinase staining in cardiomyocytes. 
Furthermore, cardiomyocyte density increased, while 
size, ploidy, and multinucleation decreased, suggesting 
that cardiomyocytes were actively dividing when Hippo 
signaling was blocked (Heallen et al., 2013). Both apical 
resection and myocardial infarction injury models showed 
striking regeneration in P8 Salv CKO mice, past the 
postnatal window of 7 days after birth. Interestingly, LAD 
ligation performed on Salv CKO mice of 8–10 weeks old 
resulted in significant functional recovery by 3 weeks post 
infarct (~70% EF, similar to controls, whereas wt mice with 
surgery had EF of ~51%). Fibrotic percent cross-sectional 
area was reduced, but scarring was still evident at 3 weeks 
post infarct. However, cardiomyocyte proliferation was 
not evaluated in this adult cardiac injury model.

Yap1 was shown to regulate heart growth via 
cardiomyocyte proliferation, independent of hypertrophy 
(von Gise et al., 2012). Consistent with this and other 
reports, Olson and colleagues also showed the importance 
of Hippo signaling in cardiomyocyte proliferation and 
regeneration (Xin et al., 2013). They showed some 
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functional redundancy between YAP and TAZ using 
compound conditional knockout mice, with Yap knockout 
giving a stronger phenotype of cardiomyopathy, including 
cardiomyocyte hypoplasia. Yap CKO also severely 
inhibited neonatal cardiac regeneration in an LAD ligation 
MI model (performed at P2), whereas controls were able 
to efficiently regenerate, as previously shown. In contrast, 
transgenic expression of a constitutively active Yap mutant 
under the control of a cardiomyocyte-specific promoter 
(αMHC-YapS112A) extended the regenerative window 
to some extent. LAD ligation performed at postnatal day 
7 was mostly repaired by postnatal day 28 in transgenic 
mice, whereas control mice exhibited massive ventricular 
scarring. Regeneration after MI at postnatal day 28 was also 
moderately improved in transgenic mice by postnatal day 
49, with a reduction in scar size to ~17% compared to ~40% 
in control mice, and an increase in fractional shortening 
and ejection fraction (~46% and ~74% compared to ~20% 
and ~40% in wt MI and ~60% and 90% in sham controls, 
respectively). Furthermore, mitotic marker PH3 was 
elevated in transgenic αMHC-YapS112A mice after MI, 
but strong evidence of cardiomyocyte cytokinesis was not 
presented. Notably, IGF-1 and phosphorylated AKT were 
increased in transgenic mice after MI, supporting previous 
work showing enhanced IGF signaling mediated by Yap 
(Xin et al., 2011).

Pu and colleagues used doxycycline-inducible cardiac 
specific expression of constitutively active Yap (Myh6-
Cre;Rosa26fs.rtTa/fs.rtTa;TRE-YAP, referred to as YAPGOF) 
to enhance cardiomyocyte proliferation and cardiac 
regeneration in an MI model (Lin et al., 2014). YAPGOF mice 
induced between 4–8 weeks of age displayed cardiomyocyte 
hyperplasia, with equivalent heart volumes and smaller 
cell size, as well as enhanced BrdU incorporation and PH3 
staining at 8 weeks. Surprisingly, sarcomeric disorganization 
and dedifferentiation was not observed. Mosaic clonal 
analysis using Brainbow showed that YAPGOF induction 
increases the incidence of single-color clusters, but not 
multicolor clusters, indicating that YAPGOF increases cell 
division. Interestingly, long-term induction of YAPGOF did 
not result in tumorigenesis, but did cause a small degree of 
fibrosis. Induction of YAPGOF beginning 1 week after LAD 
ligation (for a total of 4 weeks) resulted in enhanced EdU 
and PH3 staining near the infarct border, but functional 
recovery and mitigation of scarring was marginal. 
Treatment with a cardiac specific AAV9-YAPGOF vector at 
time of infarct resulted in improved survival and enhanced 
EdU incorporation compared to AAV9-Luc controls, but 
functional improvement was similarly unstriking.  

Although these investigations of Hippo signaling 
provide a promising new direction in cardiac regeneration 
research, more work will be required to unravel its 
complexity. For example, it is interesting that tumorigenesis 
is not observed with long-term YAPGOF expression in 
the heart (Lin et al., 2014), in contrast to that seen in the 

liver (Dong et al., 2007). Additionally, effects of Salvador 
knockout outside of YAP/TAZ regulation should be 
explored, considering its superior influence on functional 
cardiac improvement in response to injury (Heallen et al., 
2013). Since Salv CKO mice exhibit higher cardiomyocyte 
density with greater percent mononucleation even 
before infarction, it seems possible that the greater 
regenerative capacity may be due to the enhanced 
ability of mononucleate cardiomyocytes to proliferate. 
Alternatively, the effect of Salv knockout may have other 
downstream effects that contribute to cardiomyocyte 
proliferation. On the other hand, it also seems feasible 
that the increased functional recovery of Salv CKO hearts 
could be due to hypertrophic growth of the elevated pool 
of cardiomyocytes. Comparison of proliferative markers 
and cardiomyocyte size of Salv CKO mice before and after 
injury would be revealing. Finally, failure of cytokinesis 
has been shown to cause activation of the Hippo tumor 
suppression pathway (Ganem et al., 2014), potentially 
explaining how cardiomyocytes transition to the Hippo-
regulated cell cycle block between P2 and P10.  

4. Conclusion
Collectively, the body of work reviewed here represents 
significant progress toward achieving heart regeneration 
in adult mammals. In particular, the regeneration seen 
with microRNA and Hippo pathway modulation appears 
robust in younger mice, but the utility in adult mammalian 
cardiac regeneration will need to be more fully evaluated. 
Looking forward to translation in humans, it will be 
revealing to see if manipulation of these molecules and 
pathways can aid cardiac regeneration in large animal 
models. Furthermore, since some of the most promising 
approaches to stimulating heart regeneration involve 
the upregulation of proliferative pathways (e.g., Hippo 
signaling), it will be critical to achieve fine spatiotemporal 
control over pathway modulation, thereby minimizing the 
risk of neoplasia in the heart or other organs (Moroishi et 
al., 2015). Ultimately, the ideal therapeutic strategy would 
be self-limiting with respect to cell proliferation. Therefore, 
it will be interesting to see how neonatal mice and lower 
vertebrates are able to control tissue regeneration during 
cardiac repair. The insights gained in such studies may 
have a profound impact on therapeutic avenues in human 
cardiac regeneration. 
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